1

Progress on fine granularity resistive Micromegas and preliminary results of the capacitive sharing technique

M. Alviggi^{1,2}, M. Biglietti³, M. T. Camerlingo⁵, K. Chmiel^{3,4}, M. Della Pietra^{1,2}, C. Di Donato^{1,6}, R. Di Nardo^{3,4}, P. lengo², M. lodice³, R. Orlandini^{3,4}, S. Perna^{1,2}, F. Petrucci^{3,4}, G. Sekhniaidze², M. Sessa⁷

¹ INFN Napoli, ² Universita` di Napoli "Federico II", ³ INFN Roma Tre, ⁴ Universita` di Roma Tre, ⁵ INFN Bari, ⁶ Universita` di Napoli "Parthenope", ⁷ INFN Roma 2

The RHUM* (Dream) Team

*Resistive High granUlarity Micromegas for Future Detectors

 \mathcal{P}

Goals 3

- Consolidation of resistive pixelised Micromegas, for measurements at high rates - order of 10 MHz/cm2
	- High-granularity/low occupancy readout on pads of the order of $mm²$
- Robustness and stable operation at high gains
- **Performance**
	- efficiencies close to 100%
	- spatial resolution below 100 µm
	- time resolution below 10 ns
- Demonstration of the scalability of detectors on large surfaces
- Medium/Low-rate Version Capacitive Sharing
	- K. Gnanvo et al., Nucl. Instrum. Meth. A 1047 (2023) 167782

Double DLC layer Micromegas Concept 4

initial goal was to optimize the structure and to explore the complementarity among different configurations \rightarrow studies conducted on small-scale prototypes

Final configuration: use of resistive foils based on Diamond Like Carbon structures (DLC).

Readout pads are covered by a double layer of DLC with a grid of staggered interconnecting vias for rapid charge evacuation

Towards Large Size Pixelised Micromegas 5

active area : 4.8cm x 4.8 cm

segmented in 48 x16 readout pads

pad size: 1×3 mm²

Common Cathode

MM400-2

MM400-1

small size prototypes medium size prototypes large size prototype

"The Big one" Paddy-2000: 50 x 40 cm2

Readout central region $6.4x6.4$ cm² with $1x8$ mm² pads

Surrounding area – 2048 pads, 10x10 mm²

Two detectors Paddy400-1 and Paddy400-2

active area : 20 cm x 20 cm (40% readout in central part)

Anode plane pad size: 1x 8 mm2

also tested in sandwich config sharing the same cathode

Gain and Rate Capability

Addition of 2% of isobutane significantly $\begin{array}{ccc} \text{A}\end{array}$ $\begin{array}{ccc}$ extends the stability range up to 7x104 and 10⁵ with Ar: CO_2 : C_4H_{10} (93:5:2) and Ar: CF_4 : IC_4H_{10} (88:10:2)

guarantee a working point with enough margin

Rate capability Vs X-rays from the copper anode X–Ray gun.

Gain drops at 10 MHz/cm2 are limited to 10% at $G_0 = 6000$

8 keV photons ionization ∼5 higher than MIP particles \rightarrow rate capability of order 10 MHz/cm2 at a gain of 20k !

6

Gain dependence on the irradiated area 7

- stable behaviour is measured up to about 1 MHz/cm²
- empirical logarithmic dependence
- behaviour similar to small DLC prototypes

Spatial Resolution 8

- Unbiased cluster residual wrt extrapolated position from ϵ $\frac{E}{\epsilon}$ = $\frac{0.18}{0.16}$
tracking chambers
• position from charge weighted cluster centroid
• position from charge weighted cluster centroid tracking chambers
	- position from charge weighted cluster centroid
- Extrapolation error is subtracted (about 50 μ m).
- Statistical uncertainty is negligible
- Systematic uncertainty (fit procedure) ~5%

deterioration only for very small drift gap (~1.5mm)

for perpendicular tracks

Spatial resolution- Centroid Optimisation 9

The cluster position is evaluated with an extended definition of the charge weighted centroid:

optimal parameter "p" found trought a minimisation of residuals

improvement of ~35%

at high gain the resolution is limited by poor charge measurements in APV due to saturation

Under development : exploit timing information for inclined tracks \rightarrow cluster time projection method time

new

 $x_c = \frac{\sum x_i q_i^p}{\sum q_i^p}$

 $x_{trk} - \frac{\sum x_i q_i^p}{\sum q_i^p}$

10 **Efficiencies** Tracking efficiency vs. HV

- 1.5 mm (on precision coordinate) fiducial cut wrt extrapolated position from external tracking chambers
- Efficiency for perpendicular tracks is nearly 100% except at pillar positions

Paddy-2000 – the "Big One"

tested for the first time in 2024 Test Beam in April

shows similar performance as small prototypes $\frac{2}{2}$ ssoo $\frac{1}{2}$ perpendicular tracks

full analysis of TB data in progress

11

new r

Time resolution 12

Method: compute the time difference between on-track clusters in two different chambers

Gaussian fit performed to each time difference distribution, time resolution evaluated as sigma/sqrt(2)

Improved analysis (mainly better definition of detector fiducial region) \rightarrow Paddy400 time resolution \sim 6 ns at v_{arift} ~11cm/us [fast gas mixture, includes effects from electronics/APV q(t) distribution fit]

Capacitive Sharing Chamber

APV Slave

charge shared in large readout pads using capacitive coupling between stack of layers of p ads \rightarrow spatial resolution and reduction of readout channels

Pad size of "top-layer" (signal induction): 2.5x2.5 mm2

Side-L: three layers capacitive sharing: 2.5x2.5 mm2 \rightarrow 5x5 mm² \rightarrow 10x10 mm²

Side-S: two layers capacitive sharing: $2.5x2.5$ mm² \rightarrow 5x5 mm²

13

Capacitive Sharing Spatial Resolution 14

large pad resolution ~320 µm \rightarrow factor 1/30 of the pad size

small pad resolution ~200 µm \rightarrow factor 1/20 of the pad size

tipical without capacitive sharing \sim 1/14 of the pad size

Capacitive Sharing Efficiencies 15

Efficiencies around ~97%

compatible with the "standard" prototypes

16 **Summary and Outlook**

- Started in 2015, the R&D on high performance resistive Micromegas achieved all the objectives of the project and is aligned with the ECFA Roadmap implemented in the DRD1
- The R&D is approaching the strategic themes of DRD1 WP1 for large systems for future experiments, namely (task 2 deliverables):
	- high rate applications : high gain to ensure stability providing a good margins, and rate capability √
	- low/medium rate applications : R&D on capacitive sharing started promising results !
	- space and time resolution √
	- scalability for large area apparatuses \rightarrow construction and test of large size detector (50x40 cm²) ongoing – promising results!
	- simplifications and cost reduction
		- simplified DLC structures, larger readout elements (exploiting both resistive and capacitive sharing)
		- Production at Industry (ELTOS) is being investigated \rightarrow last week we have successfully built small size prototypes with DLC and the bulk technique √
- Addressing FE electronics and DAQ for high rate operations is crucial \rightarrow the Topical Workshop on Wednesday will be a good check point

Cheers from Eltos… 17

first production (2 small prototypes) done

to be tested

next steps : larger size prototypes!

