Progress on fine granularity resistive Micromegas and preliminary results of the capacitive sharing technique

M. Alviggi^{1,2}, M. Biglietti³, M. T. Camerlingo⁵, K. Chmiel^{3,4}, M. Della Pietra^{1,2}, C. Di Donato^{1,6}, R. Di Nardo^{3,4}, P. lengo², M. lodice³, R. Orlandini^{3,4}, S. Perna^{1,2}, F. Petrucci ^{3,4}, G. Sekhniaidze², M. Sessa⁷

¹ INFN Napoli, ² Universita` di Napoli "Federico II", ³ INFN Roma Tre, ⁴ Universita` di Roma Tre, ⁵ INFN Bari, ⁶ Universita` di Napoli "Parthenope", ⁷ INFN Roma 2

The RHUM^{*} (Dream) Team

*Resistive High granUlarity Micromegas for Future Detectors

2

Goals

- Consolidation of resistive pixelised Micromegas, for measurements at high rates - order of 10 MHz/cm²
 - High-granularity/low occupancy readout on pads of the order of mm²
- Robustness and stable operation at high gains
- Performance
 - efficiencies close to 100%
 - spatial resolution below 100 μm
 - time resolution below 10 ns
- Demonstration of the scalability of detectors on large surfaces
- Medium/Low-rate Version Capacitive Sharing
 - K. Gnanvo et al., Nucl. Instrum. Meth. A 1047 (2023) 167782

Double DLC layer Micromegas Concept

initial goal was to optimize the structure and to explore the complementarity among different configurations \rightarrow studies conducted on small-scale prototypes

Final configuration: use of resistive foils based on Diamond Like Carbon structures (DLC).

Readout pads are covered by a double layer of DLC with a grid of staggered interconnecting vias for rapid charge evacuation

Towards Large Size Pixelised Micromegas

small size prototypes

active area : 4.8cm x 4.8 cm

segmented in 48 x16 readout pads

pad size: 1 x 3 mm²

Cathode

MM400-2

MM400-1

large size prototype

Two detectors Paddy400-1 and

"The Big one" Paddy-2000: 50 x 40 cm²

Readout central region 6.4x6.4 cm² with 1x8 mm² pads

Surrounding area – 2048 pads, 10x10 mm²

Paddy400-2 active area : 20 cm x 20 cm (40% readout in central part)

Anode plane pad size: 1x 8 mm²

also tested in sandwich config sharing the same cathode

Gain and Rate Capability 55 Fe so

Addition of 2% of isobutane significantly extends the stability range up to $7x10^4$ and 10^5 with Ar:CO₂:iC₄H₁₀ (93:5:2) and Ar:CF₄:iC₄H₁₀ (88:10:2)

guarantee a working point with enough margin

Rate capability Vs X-rays from the copper anode X–Ray gun.

Gain drops at 10 MHz/cm² are limited to 10% at $G_0 = 6000$

8 keV photons ionization ~5 higher than MIP particles \rightarrow rate capability of order 10 MHz/cm² at a gain of 20k !

Gain dependence on the irradiated area

- stable behaviour is measured up to about 1 MHz/cm²
- empirical logarithmic dependence
- behaviour similar to small DLC prototypes

Spatial Resolution

- Unbiased cluster residual wrt extrapolated position from e tracking chambers
 - position from charge weighted cluster centroid
- Extrapolation error is subtracted (about 50 μ m).
- Statistical uncertainty is negligible
- Systematic uncertainty (fit procedure) ~5%

deterioration only for very small drift gap (~1.5mm)

for perpendicular tracks

Spatial resolution - Centroid Optimisation

The cluster position is evaluated with an extended definition of the charge weighted centroid:

optimal parameter "p" found trought a minimisation of residuals

improvement of ~35%

at high gain the resolution is limited by poor charge measurements in APV due to saturation

Under development : exploit timing information for inclined tracks → cluster time projection method

new

 $x_c = \frac{\sum x_i q_i^p}{\sum q_i^p}$

 $x_{trk} - \frac{\sum x_i q_i^p}{\sum q_i^p}$

Efficiencies Tracking efficiency vs. HV

- 1.5 mm (on precision coordinate) fiducial • cut wrt extrapolated position from external tracking chambers
- Efficiency for perpendicular tracks is nearly • 100% except at pillar positions

preliminary

precision coordinate

efficiency

0.

02

30

35

Paddy-2000 – the "Big One"

tested for the first time in 2024 Test Beam in April

shows similar performance as small prototypes

full analysis of TB data in progress

new

12 Time resolution

Method: compute the time difference between on-track clusters in two different chambers

Gaussian fit performed to each time difference distribution, time resolution evaluated as sigma/sqrt(2)

Improved analysis (mainly better definition of detector fiducial region) \rightarrow Paddy400 time resolution ~ 6 ns at v_{drift} ~11cm/us [fast gas mixture, includes effects from electronics/APV q(t) distribution fit]

Capacitive Sharing Chamber

APV Slave

charge shared in large readout pads using capacitive coupling between stack of layers of pads \rightarrow spatial resolution and reduction of readout channels

Pad size of "top-layer" (signal induction): 2.5x2.5 mm²

Side-L: three layers capacitive sharing: 2.5x2.5 mm² \rightarrow 5x5 mm² \rightarrow 10x10 mm²

Side-S: two layers capacitive sharing: 2.5x2.5 mm² \rightarrow 5x5 mm²

Capacitive Sharing Spatial Resolution

large pad resolution ~320 μ m \rightarrow factor 1/30 of the pad size

small pad resolution ~200 μm \rightarrow factor 1/20 of the pad size

tipical without capacitive sharing ~1/14 of the pad size

4

15 Capacitive Sharing Efficiencies

Efficiencies around ~97%

compatible with the "standard" prototypes

Summary and Outlook

- Started in 2015, the R&D on high performance resistive Micromegas achieved all the objectives of the project and is aligned with the ECFA Roadmap implemented in the DRD1
- The R&D is approaching the strategic themes of DRD1 WP1 for large systems for future experiments, namely (task 2 deliverables):
 - high rate applications : high gain to ensure stability providing a good margins, and rate capability \checkmark
 - low/medium rate applications : R&D on capacitive sharing started promising results !
 - space and time resolution \checkmark
 - scalability for large area apparatuses → construction and test of large size detector (50x40 cm²) ongoing – promising results!
 - simplifications and cost reduction
 - simplified DLC structures, larger readout elements (exploiting both resistive and capacitive sharing)
 - Production at Industry (ELTOS) is being investigated → last week we have successfully built small size prototypes with DLC and the bulk technique √
- Addressing FE electronics and DAQ for high rate operations is crucial → the Topical Workshop on Wednesday will be a good check point

17 Cheers from Eltos...

first production (2 small prototypes) done

to be tested

next steps : larger size prototypes!

