

Charge spreading in resistive Micromegas for the T2K/ND280 TPC

Shivam Joshi

CEA Saclay / IRFU / DPhP

17th June 2024

T2K near detector (ND280) upgrade using resistive Micromegas for HA-TPC

The T2K experiment: Tokai to Kamioka

Off-axis angle

Neutrino cartoons by Yuki Akimoto

17th June 2024 Shivam Joshi | Charge spreading in resistive Micromegas for the T2K/ND280 TPC SAMES AND AND AND A

North Court of Court

T2K near detector: ND280

ND280 (before upgrade) ND280 (before upgrade)

ND280 measures beam spectrum and flavor composition before the oscillations

- Detector installed inside the **UA1/NOMAD magnet (0.2 T)**
- **A detector optimized to measure π0 (P0D)**
- **An electromagnetic calorimeter to distinguish tracks from showers**

- \rightarrow Low angular acceptance \rightarrow mostly reconstruct forward going tracks entering the TPCs.
- → Low efficiency to track low momentum protons.

A target-tracker system composed of:

- **2 Fine Grained Detectors (target for ν interactions).**
	- **FGD1 is pure scintillator,**
	- **FGD2 has water layers interleaved with scintillators**
- **3 vertical Time Projection Chambers: reconstruct momentum and charge of particles, PID based on measurement of ionization**

٠

ND280 upgrade

P0D replaced with a new scintillator target (Super-FGD), two High-Angle TPCs and six ToF planes.

> High-Angle TPCs allow to reconstruct muons at any angle with respect to beam.

- Readout using resistive Micromegas.
- Spatial resolution better than 800 μm and dE/dx resolution better than 10% for all incident angles and drift distances.
- ➤ Super-FGD allow to fully reconstruct tracks in $3D \rightarrow$ lower threshold and excellent resolution to reconstruct protons at any angle.
	- Neutrons will also be reconstructed by using time of flight between anti-ν interaction vertex and neutron re-interaction in the detector.
- ToF planes allow to veto particles originating from outside the ND280 fiducial volume.

Detector installation in ND280 pit

First neutrino interactions with full ND280 upgrade!

HA-TPC: Resistive Micromegas detectors

 $R =$ Surface resistivity $C =$ Capacitance / unit area **References**: M.S. Dixit et.al., NIM A518, 721 (2004) , M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

Modeling of charge spreading with resistive Micromegas

Electronics Response function

- \triangleright Each channel of an Electronics card is injected with multiple pulses of different amplitudes.
- Resulting output signals(response of Electronic cards) are fitted with the Electronics response function.

$$
R(t) = A\left[e^{-w_st} + e^{\frac{-w_st}{2Q}}\left(\sqrt{\frac{2Q-1}{2Q+1}}\sin\left(\frac{w_st}{2}\sqrt{4-\frac{1}{Q^2}}\right) - \cos\left(\frac{w_st}{2}\sqrt{4-\frac{1}{Q^2}}\right)\right)\right]
$$

- \geq Parameterized by 2 main variables related to shape of a signal waveform: **Q** and **w s.**
- \geq Variation in these fit parameters over all the pads was studied to determine if they can be set as constants.

•
$$
Q = 0.6368
$$

• $w_s = 0.1951$

Charge spreading model

Charge diffusion function:

$$
Q_{pad}(t) = \frac{Q_e}{4} \times \left[erf(\frac{x_{high} - x_0}{\sqrt{2}\sigma(t)}) - erf(\frac{x_{low} - x_0}{\sqrt{2}\sigma(t)}) \right] \times \left[erf(\frac{y_{high} - y_0}{\sqrt{2}\sigma(t)}) - erf(\frac{y_{low} - y_0}{\sqrt{2}\sigma(t)}) \right]
$$

- $\sigma(t) = \sqrt{\frac{2t}{RC}}$ Obtained from Telegrapher's equation for charge diffusion.
- Integrating charge density function over area of 1 readout pad.
- \geq Parameterized by 5 variables:

 \cdot X_0 • y_0 Initial charge position

- \bullet $\,$ t $_{\rm o}$: Time of charge deposition in leading pad
- RC : Describes charge spreading
- \bullet , Q_{e} : Total charge deposited in an event

x_H, x_L: Upper and lower bound of a pad in x-direction $\bm{{\mathsf{y}}}_{{\mathsf{H}}}, \bm{{\mathsf{y}}}_{{\mathsf{L}}}$: Upper and lower bound of a pad in y-direction

Signal model

Convolution of charge diffusion function with derivative of electronics response function.

Application of charge spreading model in X-ray data

X-ray test bench

- \ge Each pad(1152) of an ERAM placed inside an X-ray chamber is scanned using a robot holding an ⁵⁵Fe X-ray source.
- \geq ⁵⁵Fe spectrum can be reconstructed using all events in one pad.

Summing all waveforms in each event and taking amplitude of summed waveform

 Gain is obtained for a pad by fitting its 55Fe spectrum. Resolution of < 10% is obtained.

 $rac{a}{2}$ 30

 $25 -$

 $20 -$

 $15⁺$

300 1250 1200

1150 1100

1050

1000

Application of Signal model on X-ray data

RC is obtained for a pad by simultaneous fit of waveforms in each event. \leq Simultaneous fit: Leading pad + Neighbouring

pads are fitted simultaneously -270.12

Results from fitting events in 1 pad

Dependence of RC and Gain on DLC voltage

> Same pad of an ERAM is scanned at 4 different DLC voltages.

RC v/s DLC voltage State of the Research Control of Cain v/s DLC

voltage

 RC is largely invariant w.r.t DLC voltage.

 Linear relation between Gain and DLC voltage in log scale.

RC extraction from all ERAM pads

- \triangleright Fitting process is carried out for all pads to obtain RC map.
- **EXC is more homogeneous in horizontal direction than in vertical direction.**
- \geq RC maps and Gain maps will be used in global event reconstruction algorithm.

Validation of Signal model

Gain Map from ⁵⁵Fe spectrum fit | ERAM30 $\frac{36}{5}$ 30 1300 1250 25 1200 20 150 100 15 1050 1000 950 900 25 35
Xpad -5 10 15 20 30 Gain map from waveform sum method

- \geq Very high similarity in Gain maps obtained from 2 different methods.
- \geq Gain results serve as validation for Electronics Response function, and robustness of entire model.

RC results from ERAM data analysis

Understanding RC map features: Compare with R values

→ Standard production values for majority of ERAMs -

 \geq RC map structures seem to be correlated with R measurements.

Understanding RC map features: Charge spreading using basic-level variables

- \geq Both non-transformed variable maps exhibit key features of RC map with varying degrees of precision.
- Note: Charge deposition point is computed using center-of-charge method

RC maps of two atypical ERAMs

RC results of ERAMs with different DLC resistivity and glue thickness than usual, is coherent with theory.

RC maps of ERAMs used in CERN 2022 test beam

RC information of all analyzed ERAMs

Mean RC and Gain of all analyzed ERAMs

 \geq No correlation between mean RC and Gain of analyzed ERAMs.

Performance of resistive Micromegas

 \geq Spatial resolution better than 800 µm and dE/dx resolution better than 10% are observed for all the incident angles and for all the drift distances of interest.

Conclusion

- Upgrade of ND280 has been successfully completed!
- ND280 upgrade employs resistive Micromegas for the read-out of HA-TPC, which works on the principle of charge spreading.
	- **37 have been fully validated.**
- Charge spreading model is obtained from convolution of charge diffusion function and derivative of electronics response function.
- \geq The model is able to successfully fit waveforms from X-ray data.
	- \geq RC and Gain can be simultaneously extracted from X-ray data.
	- \geq RC and Gain information will be a useful ingredient in the HA-TPC simulation and reconstruction.
	- > No correlation seen between mean RC and Gain of all analyzed ERAMs.
- Features visible in RC maps are validated by R measurements of DLC foil and basic-level variables.
- \geq RC results of ERAMs with different DLC resistivity and glue thickness is coherent with theory.

Link to paper: <https://doi.org/10.1016/j.nima.2023.168534>OR https://arxiv.org/abs/2303.04481

THANK YOU!

Back-up

$$
\rho_{0\,D}(r\,,t) = \frac{Q_{primary}G}{2\,\pi} \frac{1}{\sigma^2(t)} e^{-\frac{r^2}{2\,\sigma^2(t)}}
$$

Charge on a pad:

$$
Q_{pad}(t) = \frac{Q_{primary} G}{4} erf \left(\frac{x_H - X_0}{\sigma(t)\sqrt{2}}\right) - erf \left(\frac{x_L - X_0}{\sigma(t)\sqrt{2}}\right) \left[erf \left(\frac{y_H - Y_0}{\sigma(t)\sqrt{2}}\right) - erf \left(\frac{y_L - Y_0}{\sigma(t)\sqrt{2}}\right)\right]
$$

Electronics response: (upto ADC) Dirac impulse response

$$
ADC_{Dirac}(t) = \frac{4096}{120 fC} \frac{F(t)}{F^{Max}} \text{ with } F(t) = e^{-w_s t} + e^{-\frac{w_s t}{2Q}} \left(\sqrt{\frac{2Q-1}{2Q+1}} \sin \left(\frac{w_s t}{2} \sqrt{4 - \frac{1}{Q^2}} \right) - \cos \left(\frac{w_s t}{2} \sqrt{4 - \frac{1}{Q^2}} \right) \right)
$$

 \blacktriangleright Implementing the correspondence- 120 fC \leftrightarrow 4096 counts.

 \geq Dirac current pulse carrying 120 fC \longrightarrow ADC(t) impulse response with a maximum amplitude of 4096 counts.

Effect of PCB design on Gain

- the gain and worsens the resolution in pads on top of the PCB stiffener.
- \geq Replacing copper + soldering mask with a copper mesh fixed this issue.

11th Dec. 2023 Shivam Joshi | Charge spreading and RC measurement in T2K |

Amplification gap

> Copper mesh

PCB

Stiffener

e e l'altre de l'altre d

Gain non-uniformity within a pad

- \geq High-granularity Gain map obtained using simultaneous fit by plotting $(x_0, y_0,$ Gain) for each charge deposition.
- \geq Gain variations seen within pads partly on top of PCB (soldermask + copper) overlay.
- Horizontal stiffener layer causes different gain in upper and lower halves of affected pads.

Discretization of RC

Resolution (%)

2400

2200

2000

1800

Gain

τ

Gain and resolution of analyzed ERAMs

Gain distribution

Candle with one bar noticeably longer than the other

ERAM with a problematic region of abnormal Gain (e.g. ERAM-02, ERAM-26)

Resolution distribution

Candle with one bar longer than the other

ERAM with a stiffener structure (e.g. ERAM-09 to ERAM-18)