

UNIVERSITE PARIS-SACLAY

Charge spreading in resistive Micromegas for the T2K/ND280 TPC

- Shivam Joshi

CEA Saclay / IRFU / DPhP

17th June 2024

T2K near detector (ND280) upgrade using resistive Micromegas for HA-TPC

The T2K experiment: Tokai to Kamioka

Off-axis angle

Neutrino cartoons by Yuki Akimoto

T2K near detector: ND280

ND280 (before upgrade)

ND280 measures beam spectrum and flavor composition before the oscillations

- Detector installed inside the UA1/NOMAD magnet (0.2 T)
- > A detector optimized to measure π^{0} (P0D)
- An electromagnetic calorimeter to distinguish tracks from showers

Low efficiency to track low momentum protons.

A target-tracker system composed of:

- 2 Fine Grained Detectors (target for v interactions).
 - FGD1 is pure scintillator,
 - FGD2 has water layers interleaved with scintillators
- **3 vertical Time Projection Chambers: reconstruct** momentum and charge of particles, PID based on measurement of ionization

17th June 2024

ND280 upgrade

P0D replaced with a new scintillator target (Super-FGD), two High-Angle TPCs and six ToF planes.

High-Angle TPCs allow to reconstruct muons at any angle with respect to beam.

- Readout using resistive Micromegas.
- Spatial resolution better than 800 µm and dE/dx resolution better than 10% for all incident angles and drift distances.
- Super-FGD allow to fully reconstruct tracks in 3D \rightarrow lower threshold and excellent resolution to reconstruct protons at any angle.
 - Neutrons will also be reconstructed by using time of flight between anti-v interaction vertex and neutron re-interaction in the detector.
- ToF planes allow to veto particles originating from outside the ND280 fiducial volume.

Detector installation in ND280 pit

17th June 2024

First neutrino interactions with full ND280 upgrade!

17th June 2024

HA-TPC: Resistive Micromegas detectors

R = Surface resistivity C = Capacitance / unit area References: M.S. Dixit et.al., NIM A518, 721 (2004), M.S. Dixit & A. Rankin, NIM A566, 281 (2006)

➔ Telegrapher's equation:

 $\frac{\partial \rho}{\partial_t} = \frac{1}{RC} \left[\frac{\partial^2 \rho}{\partial r^2} + \frac{1}{r} \frac{\partial \rho}{\partial r} \right]$ $\Rightarrow \rho(r,t) = \frac{RC}{2t} e^{\frac{-r^2 RC}{4t}}$

17th June 2024

Modeling of charge spreading with resistive Micromegas

Electronics Response function

- Each channel of an Electronics card is injected with multiple pulses of different amplitudes.
- Resulting output signals(response of Electronic cards) are fitted with the <u>Electronics response function</u>.

$$R(t) = A\left[e^{-w_s t} + e^{\frac{-w_s t}{2Q}}\left(\sqrt{\frac{2Q-1}{2Q+1}}\sin\left(\frac{w_s t}{2}\sqrt{4-\frac{1}{Q^2}}\right) - \cos\left(\frac{w_s t}{2}\sqrt{4-\frac{1}{Q^2}}\right)\right)\right]$$

- Parameterized by 2 main variables related to shape of a signal waveform: Q and w
- Variation in these fit parameters over all the pads was studied to determine if they can be set as constants.

Ingredients for charge spreading model

Charge spreading model

Charge diffusion function:

$$Q_{pad}(t) = \frac{Q_e}{4} \times \left[erf(\frac{x_{\mathsf{high}} - x_0}{\sqrt{2}\sigma(t)}) - erf(\frac{x_{\mathsf{low}} - x_0}{\sqrt{2}\sigma(t)}) \right] \times \left[erf(\frac{y_{\mathsf{high}} - y_0}{\sqrt{2}\sigma(t)}) - erf(\frac{y_{\mathsf{low}} - y_0}{\sqrt{2}\sigma(t)}) \right]$$

- ⇒ Obtained from Telegrapher's equation for charge diffusion.
- Integrating charge density function over area of 1 readout pad.
- Parameterized by 5 variables:

x₀
y₀
Initial charge position

- t_0 : Time of charge deposition in leading pad
- RC : Describes charge spreading
- Q_e : Total charge deposited in an event

 x_{H}, x_{L} : Upper and lower bound of a pad in x-direction y_{H}, y_{L} : Upper and lower bound of a pad in y-direction

Signal model

Convolution of charge diffusion function with derivative of electronics response function.

17th June 2024

Application of charge spreading model in X-ray data

X-ray test bench

Drift gap: 3 cm

- Each pad(1152) of an ERAM placed inside an X-ray chamber is scanned using a robot holding an ⁵⁵Fe X-ray source.
- ⁵⁵Fe spectrum can be reconstructed using all events in one pad.

Summing all waveforms in each event and taking amplitude of summed waveform

Gain is obtained for a pad by fitting its ⁵⁵Fe spectrum. Resolution of < 10% is obtained.</p>

17th June 2024

, pad

25

20

1250 1200

1150 1100

1050

1000

Application of Signal model on X-ray data

RC is obtained for a pad by simultaneous fit of waveforms in each event.

Simultaneous fit: Leading pad + Neighbouring pads are fitted simultaneously

17th June 2024

Results from fitting events in 1 pad

Dependence of RC and Gain on DLC voltage

Same pad of an ERAM is scanned at 4 different DLC voltages.

17th June 2024

130⊨

330

335

voltage.

345

RC is largely invariant w.r.t DLC

340

350

355

360

DLC voltage (V)

Shivam Joshi | Charge spreading in resistive Micromegas for the T2K/ND280 TPC

•

330

in log scale.

335

340

345

Linear relation between Gain and DLC voltage

350

355

DLC voltage (V)

360

RC extraction from all ERAM pads

- Fitting process is carried out for all pads to obtain RC map.
- \succ RC is more homogeneous in horizontal direction than in vertical direction.
- RC maps and Gain maps will be used in global event reconstruction algorithm.

Validation of Signal model

Ratio of Gain(of each pad) obtained from 2 different methods

Ratio_{mean} = 1.037

- Very high similarity in Gain maps obtained from 2 different methods.
- Gain results serve as validation for Electronics Response function, and robustness of entire model.

17th June 2024

RC results from ERAM data analysis

Understanding RC map features: <u>Compare with R values</u>

→ 90 R-measurements → 18 rows x 5 columns
→ Upon applying probe correction factor, mean value of surface resistivity → 620 kΩ/□.

Assuming plane capacitance, RC = 118 ns/mm².

RC value in accordance with that of ERAMs produced with same DLC foil batch.

Note: Variation in resistivity measurements is seen from probe to probe.

Standard production values for majority of ERAMs -

RC map structures seem to be correlated with R measurements.

17th June 2024

Understanding RC map features: Charge spreading using basic-level variables

Basic-level variable maps

NP waveform

Leading pad

- Both non-transformed variable maps exhibit key features of RC map with varying degrees of precision.
- Note: Charge deposition point is computed • using center-of-charge method

17th June 2024

25

RC maps of two atypical ERAMs

RC results of ERAMs with different DLC resistivity and glue thickness than usual, is coherent with theory.

RC maps of ERAMs used in CERN 2022 test beam

17th June 2024

RC information of all analyzed ERAMs

17th June 2024

Shivam Joshi | Charge spreading in resistive Micromegas for the T2K/ND280 TPC

28

Mean RC and Gain of all analyzed ERAMs

No correlation between mean RC and Gain of analyzed ERAMs.

Performance of resistive Micromegas

Spatial resolution better than 800 µm and dE/dx resolution better than 10% are observed for all the incident angles and for all the drift distances of interest.

17th June 2024

Conclusion

- Upgrade of ND280 has been successfully completed!
- ND280 upgrade employs resistive Micromegas for the read-out of HA-TPC, which works on the principle of charge spreading.
 - > 37 have been fully validated.
- Charge spreading model is obtained from convolution of charge diffusion function and derivative of electronics response function.
- The model is able to successfully fit waveforms from X-ray data.
 - RC and Gain can be simultaneously extracted from X-ray data.
 - > RC and Gain information will be a useful ingredient in the HA-TPC simulation and reconstruction.
 - No correlation seen between mean RC and Gain of all analyzed ERAMs.
- Features visible in RC maps are validated by R measurements of DLC foil and basic-level variables.
- RC results of ERAMs with different DLC resistivity and glue thickness is coherent with theory.

Link to paper: https://doi.org/10.1016/j.nima.2023.168534 OR-https://arxiv.org/abs/2303.04481

THANK YOU!

Back-up

the second

Gain extraction from simultaneous fit

• Charge density:

$$\rho_{0D}(r,t) = \frac{Q_{primary}G}{2\pi} \frac{1}{\sigma^{2}(t)} e^{-\frac{r^{2}}{2\sigma^{2}(t)}}$$

• Charge on a pad:

$$Q_{pad}(t) = \frac{Q_{primary}G}{4} \operatorname{erf}\left(\frac{x_H - X_0}{\sigma(t)\sqrt{2}}\right) - \operatorname{erf}\left(\frac{x_L - X_0}{\sigma(t)\sqrt{2}}\right) \left[\operatorname{erf}\left(\frac{y_H - Y_0}{\sigma(t)\sqrt{2}}\right) - \operatorname{erf}\left(\frac{y_L - Y_0}{\sigma(t)\sqrt{2}}\right)\right]$$

Electronics response: (upto ADC) Dirac impulse response

$$ADC_{Dirac}(t) = \frac{4096}{120 \, fC} \frac{F(t)}{F^{Max}} \text{ with } F(t) = e^{-w_s t} + e^{-\frac{w_s t}{2Q}} \left(\sqrt{\frac{2Q-1}{2Q+1}} \sin\left(\frac{w_s t}{2} \sqrt{4 - \frac{1}{Q^2}}\right) - \cos\left(\frac{w_s t}{2} \sqrt{4 - \frac{1}{Q^2}}\right) \right)$$

Implementing the correspondence- 120 fC \leftrightarrow 4096 counts.

> Dirac current pulse carrying 120 fC \longrightarrow ADC(t) impulse response with a maximum amplitude of 4096 counts.

17th June 2024

Effect of PCB design on Gain

- Due to the copper + soldering mask layer, there is an unequal distribution of pressure from stiffener onto the PCB.
- This phenomenon causes variations in amplification gap, which in turn alters the gain and worsens the resolution in pads on top of the PCB stiffener.
- Replacing copper + soldering mask with a copper mesh fixed this issue.

11th Dec. 2023

Shivam Joshi | Charge spreading and RC measurement in T2K I

Copper

Soldering

mask

Amplification gap

Copper

mesh

Stiffener

PCB

Stiffener

Gain non-uniformity within a pad

- > High-granularity Gain map obtained using simultaneous fit by plotting $(x_0, y_0, Gain)$ for each charge deposition.
- Gain variations seen within pads partly on top of PCB (soldermask + copper) overlay.
- Horizontal stiffener layer causes different gain in upper and lower halves of affected pads.

Discretization of RC

17th June 2024

Resolution (%)

2400

2200

Gain

Gain and resolution of analyzed ERAMs

Gain distribution

Candle with one bar noticeably longer than the other

ERAM with a problematic region of abnormal Gain (e.g. ERAM-02, ERAM-26)

Resolution distribution

Candle with one bar longer than the other

ERAM with a stiffener structure (e.g. ERAM-09 to ERAM-18)

38