## ASIC developments for the AMBER MM experiment

### Chiara Alice, Maxim Alexeev, Gianni Mazza

AMBER collaboration

mazza@to.infn.it

June 19th 2024

G. Mazza (AMBER MM)

AMBER

June 19<sup>th</sup> 2<u>024</u>

### AMBER MM ASIC project

- New development for the MicroMegas detector of the AMBER experiment
- Possibly compatible also with straw detectors
- Moderate timing resolution (1-2 ns or better)
- Analog Front-End : custom development
  - inspired to VMM<sup>(1)</sup> and Tiger<sup>(2)</sup> designs
- Back-end : same as the ToASt ASIC<sup>(3)</sup>
  - silicon proven
  - save time in terms of design and test set-up development

 G.De Geronimo et al., The VMM3a ASIC,
 IEEE Trans. Nucl. Sci., vol. 69, no. 4, Apr. 2022
 (2) A.Rivetti et al., TIGER: A front-end ASIC for timing and energy measurements with radiation detectors, Nucl. Instrum. Meth., A 924, pp. 181-186, 2016
 (3) G.Mazza et al., A 64 channels ASIC for the readout of the silicon strip detectors of the PANDA micro-vertex detector, J. Instrum., vol. 18, C01020, Jan. 2023

G. Mazza (AMBER MM)

AMBER

### AMBER experiment



- COMPASS spectrometer as starting point
- Several detectors being upgraded
- New detectors added

 3 MWPC stations will be replaced with Micro-Mega detectors → new design

MM under development

AMBER

# AMBER MM



#### First prototype

- Active area:  $6.8 \times 6.8$  cm<sup>2</sup>
- Amplification gap: 128  $\mu$ m
- Conversion gap:  $\sim$ 5 mm
- Strips width: 400  $\mu$ m
- Pitch: 550 μm
- Holes:  $45 \times 45 \ \mu m^2$
- Wires diameter: 18  $\mu$ m

...work in progress...

Note : detector and ASIC developments have to go in parallel

# Specifications

| Detector          | MM         | Straw       |                |
|-------------------|------------|-------------|----------------|
| Channels/ASIC     | 64         | 64          |                |
| Power/channel     | $\leq$ 5   | $\leq 10$   | mW             |
| Input capacitance | $\leq$ 150 | 20-100      | рF             |
| Input charge      | 1-100      | 1-1000      | fC             |
| Input impedance   | tbd        | tbd         | Ω              |
| Max rate          | ≤2         | $\leq$ 0.18 | MHz            |
| Peaking time      | 150        | 75-150      | ns             |
| Time resolution   | 1-2        | $\leq 1$    | ns             |
| Charge resolution | tbd        | 10          | bits           |
| Gain              | 10         | 1           | mV/fC          |
| ENC @10 pF        | 500-1000   |             | e <sup>-</sup> |
| ENC @150 pF       | 1000-2000  |             | e <sup>-</sup> |
| ENC @60 pF        |            | 3000        | e <sup>—</sup> |
| Threshold range   | tbd        | 0-15        | fC             |
| Clock frequency   | 200        | 200         | MHz            |

G. Mazza (AMBER MM)

AMBER

June 19<sup>th</sup> 2024

### Analog channel architecture



# Analog front-end

#### Charge Sensitive Amplifier

- Two gains : 1 and 10 mV/fC
- Possibility to accept inputs from both polarities

#### Shaper

- 3<sup>rd</sup> order, one real and two cc poles
- Programmable peaking time
- Double threshold signal detection
  - Lower threshold for time measurement, higher threshold for validation
- Peak detector signal
- Peak holder for charge measurement (via ToT)
- Linear ToT measurement under evaluation

# CSA+Shaper simulations



G. Mazza (AMBER MM)

AMBER

June 19<sup>th</sup> 2024

### Signal detection



### Full channel architecture



AMBER

- Common time stamp distributed to all channels
- 3 data register for time acquisition
  - G. Mazza (AMBER MM)

- 2 configuration registers
- Threshold and discharge current fine tuning

June 19<sup>th</sup> 2024

### Time measurement

- Time resolution set by clock frequency
  - 200 MHz  $\rightarrow$  1.44 ns r.m.s.
- ToT-based charge measurement for time walk correction
- Option for second version
  - Channel or region-level 8-tap delay line
  - Delay controlled by a global DLL
  - Time resolution 180 ps r.m.s.
- Studies ongoing real signals
  - Problem of multiple ionization
  - Detector-FE co-design

### ASIC architecture



G. Mazza (AMBER MM)

- Event driven (no trigger)
- Time of arrival order is different from time of readout
- Events are divided in frames
  - Frame duration : full cycle of the time-stamp counter
  - Event readout order does not correspond to event time of arrival
  - Events in a given time frame are not time-ordered
  - Events belonging to the same time-stamp counter cycle are transmitted in the same frame
- Continuous data transmission (sync words when no data available)

### Output data format

- Data output in 32 bits words over 200 Mb/s serial links
- It can be configured to use 1 or 2 links
- Frame lenght : 20.48  $\mu$ s at 200 MHz
- Data within a frame are packed within a frame header and a frame trailer
- Frame header contains chip id and frame number
- Frame trailers contains the number of valid samples and CRC

| Packet type | Header 1 | Header 2                                          | Data                                   |  |
|-------------|----------|---------------------------------------------------|----------------------------------------|--|
|             | 1 bit    | 3 bit                                             | 28/31 bits                             |  |
| Header      | 1        | 010                                               | ChipId[6:0] Reserved[12:0] FrameN[7:0] |  |
| Trailer     | 1        | 101                                               | DataCnt[11:0] CRC[15:0]                |  |
| Sync        | 1        | 000                                               | 1100 1100 1100 1100 1100 1100 1111     |  |
| Data        | 0        | Region[2:0] Channel[2:0] Le[11:0] Pk[5:0] Te[6:0] |                                        |  |

# Control unit

- Serial link at 1/2 of the master clock frequency
- Input : 16 bits command
- Output : 16 bits data
- Address :
  - $\bullet \ a_B$  : broadcast address
  - $a_6a_5a_4a_3a_2a_1a_0$  : chip address
- Three types of registers :
  - Global Control Registers (GCR)
  - Region Control Registers (RCR)
  - Channel Control Registers (CCR)

### Control data format

| Function                   | Data   | Op code                                           |
|----------------------------|--------|---------------------------------------------------|
|                            | 4 bits | 12 bits                                           |
| Chip Select                | 1101   | $01a_{ m B}a_{6}a_{5}a_{4}a_{3}a_{2}a_{1}a_{0}00$ |
| Chip Deselect              | 0000   | 00xx xxxx xxxx                                    |
| Register select (channel)  | 0100   | $0000r_2r_1r_00c_2c_1c_0a_0$                      |
| Register select (region)   | 0100   | $0000r_2r_1r_01a_3a_2a_1a_0$                      |
| Register select (global)   | 0100   | $00010a_6a_5a_4a_3a_2a_1a_0$                      |
| Register write             | 0101   | $d_{11}d_{10}d_9d_8d_7d_6d_5d_4d_3d_2d_1d_0$      |
| Register read              | 0110   | 0000 0000 0000                                    |
| No operation               | 1111   | 0000 0000 0000                                    |
| Reserved for config output | 1000   | $d_{11}d_{10}d_9d_8d_7d_6d_5d_4d_3d_2d_1d_0\\$    |

AMBER

June 19<sup>th</sup> 2024

- Asynchronous power-on reset : for start-up only
- Synchronous, pulse lenght encoded reset :
  - 1 clock cycle reset pulse : ignored
  - 2 clock cycles reset pulse : time stamp counter and Tx units reset
  - 3 clock cycle reset pulse : ignored
  - n $\geq$ 4 clock cycles reset pulse : global reset
- "Short" synchronous reset used for time stamp synchronization at the system level

- A new ASIC for the readout of MicroMegas detectors, currently under design
- Custom developed analog FE
- Two gains, 10 mV/fC and 1 mV/fC
- Provides ToA, peak position, ToT
- Digital BE from a silicon-proven design (ToASt)
- Submission foreseen for 2H2024