ASIC design challenges with a focus on precise timing

Gianni Mazza

INFN sez. di Torino

mazza@to.infn.it

June 19th 2024

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Basic techniques for timing measurements

Single sampling

- Simpler system
- Lower power
- Lower data throughput
- Requires time walk compensation
- Requires pile-up management

Multiple sampling

- Digital post-processing
- Provides both time and charge informations
- Possibility to remove common noise
- Requires high performance ADC

Timing systems: single sample

- The sensor signal is usually amplified and shaped
- A comparator generates a digital pulse
- The threshold crossing time is captured and digitized by a TDC
- TDC can be embedded on the front-end chip or external
- Timing is derived from a single sample

Time jitter - single sampling

$$\sigma_{T} = \frac{\sigma_{V}}{\frac{\Delta V(t)}{\Delta t}}$$
$$\frac{\Delta V(t)}{\Delta t} \approx \frac{V}{t_{r}} \rightarrow \sigma_{T} = \frac{t_{r}}{SNR}$$
$$t_{r} \propto \frac{1}{BW}, SNR \propto \frac{1}{\sqrt{BW}}$$
$$\sigma_{T} \propto \frac{1}{\sqrt{BW}}$$

 The front-end rise time should be matched to the sensor collection time $t_r = 1 \text{ ns}, SNR = 10 \rightarrow \sigma_T = 100 \text{ ps}$ $t_r = 40 \text{ ns}, SNR = 20 \rightarrow \sigma_T = 2 \text{ ns}$

ASIC design challenges

Time walk

$$\Delta T = au_P ln \Big(rac{2k}{2k-1} \Big)$$

 $k = rac{V_P}{V_{Pmin}}$

- Pulses of same shape and different amplitude crosses the threshold at different times
- Large variations if SNR is low
- Even worse if also the signal shape changes
- Time walk introduces an error in time measurement
- Correction techniques :
 - Amplitude correction
 - Zero crossing comparator
 - Constant fraction discriminator

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Simplest TDC : digital counter

counter	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
channel 0	
channel N	X

- Free running counter
- Upon hit arrival, the counter state is stored in a register
- Gray-coded counter if the hit is not synchronized with the clock
- Easy to extend to multiple channel - caveat : power consumption
- Time precision is limited by the clock period

$$\sigma_{TDC} = \frac{T_{CK}}{\sqrt{12}}$$

• e.g. 1 ns resolution (i.e. 290 ps r.m.s.) requires a 1 GHz clock

G. Mazza (INFN sez. di Torino)

How to improve the resolution beyond the clock period

- Counter-based TDC ok for resolutions down to few ns, an additional circuit is required to measure the time elapsing between the event and the next clock transition
- Techniques to move into the ps resolution :
 - PLL, DLL
 - Closed loop system
 - Clock cleaning, clock multiplication (PLL)
 - Long delay chains (DLL)
 - Complex, high power
 - TAC
 - Simple, high time resolution
 - Dead time
 - Vernier line
 - High time resolution
 - Based on gate delays (PVT variations)
 - Long delay chains
 - Interpolation, RC delays

June 19th 2024

Timing systems: multiple samples

- The sensor signal is usually amplified and shaped
- The full waveform is sampled and digitized at high speed
- A high performance ADC is required
- In many systems, sampling and digitization are decoupled
- Timing is extracted with DSP algorithms from the digitized waveform samples
- Timing is derived from multiple samples

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Choice of the sampling rate

- f_S : in principle the higher the better
 - but increases cost, power consumption and data throughput
- Shannon's theorem : $f_S > 2 \cdot f_{MAX}$
 - Mandatory for digital filtering
 - f_{MAX} is much higher than the -3 dB bandwidth
 - Not easy to calculate f_{MAX} from the pulse basic parameters $(t_r, t_f, FWHM)$
 - Anti aliasing filters
- Oscilloscope manufacturer rule of thumb : $f_S > 5 \cdot f_{MAX}$
- To emulate "analogue-like" timing algorithms, a minimum of 3 samples on the trailing edge are required. More samples allow the use of simpler algorithms
- If $f_S >> 2 \cdot f_{MAX}$, the extra samples can be used to decrease the quantization noise (oversampling)

Comparison between ADC architectures

 $SNDR = 6.02 \times N + 1.78$

B. Murmann, "ADC Performance Survey 1997-2023," [Available Online]

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Successive approximation ADCs with capacitive DAC

- Resolutions : 8-14 bits, sampling frequency : few hundreds MS/s
- Calibration required for N>10 bits
- Conversion in N-clock cycles (+sampling time). Often requires a PLL

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Multiple sampling : possible architectures

- Continuous DAQ
 - All the data are acquired at the sampling rate
 - The result is obtained after a fixed latency
 - Require a continuously sampling ADC
 - 12 bits, 1 GS/s \rightarrow 12 Gb/s per channel
- Zone of Interest DAQ
 - Require a trigger logic
 - Strong data rate reduction
 - No fixed latency
 - No full rate ADC if an analogue memory is used.

G. Mazza (INFN sez. di Torino)

Maximum ENOB vs input frequency

$$SNR_{ideal} = 20 \log_{10} \Big[rac{1}{2 \pi f_{sig} t_j} \Big]$$

 $SNR_{bits} = [6.02N + 1.76]$

f_{sig} : signal maximum frequency t_j : r.m.s. jitter N : number of bits

Note :

- f_{sig} is the **signal** (not the **sampling**) frequency
- ENOB always smaller than ADC resolution (includes errors and non-linearity)

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Design example : VMM3

G. De Geronimo, Prospects for VMM4, RD51 Collaboration Meeting, Dec. 4-8 2023

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Design example : HGCROC/HKROC

- ADC : 40 MS/s 10 bit (AGH Krakow), ToT to extend dynamic range
- Peak waveform sampling

C. De La Taille, ASICs for 5D calorimetry at Ω , 16th Pisa meeting May 27-31 2024

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Design example : LiTE-DTU

- Data Compression and Transmission Unit
- Fast command and lock control units
- 1.28 Gb/s serializers

 Two 12 bits, 160 MS/s ADCs (designed by Renesas)

- Clock multiplication PLL (from LpGBT)
- Technology : CMOS 65 nm

Conclusions

- Time measurements : two main architectures
 - Single sample
 - Waveform sampler
- Single sample
 - Relative simple system
 - Time-walk correction required
 - Pile-up events can be difficult to detect
 - Key element : TDC
- Waveform sampler
 - Better signal reconstruction
 - Higher complexity and power requirements
 - High data rate
 - Key element : ADC
- Slow event rate allows for less demanding architectures

Backup slides

G. Mazza (INFN sez. di <u>Torino)</u>

Extension with Time Interleaving

 $SNDR = 6.02 \times N + 1.78$

B. Murmann, "ADC Performance Survey 1997-2023," [Available_Online]

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

PLL and DLL

PLL

- Can improve clock jitter
- Key element is the VCO

DLL

- Does not improve clock jitter
- Long delay lines
- Simpler to design

DLL

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024

Time interleaved converters

- Widely used in DSO
- Analog mux performances critical
- ADC intercalibration required

G. Mazza (INFN sez. di Torino)

ASIC design challenges

June 19th 2024