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The VMM frontend!

@ Mixed-signal

@2-phase readout with
external ADC

wpeak and timing
information

@neighboring readout

@sub-hysteresis
discrimination

=few timing outputs
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* Custom readout system was developed to address the VMM performance
5 and the possibility of Micromegas being in ATLAS Trigger (requirement)

* The Address 1n Real Time (ART) explored the possibility of getting the
strip with the first in time signal as a primitive for trigger

VMMI 1mplementat10n The ART concept

> . - -
N -
. .

I LI rrri rrri I i rrri LI rrri rrri rrri rrri E -
05 =" ! ! ! ! ! ! ! s S | 4| —e— Triggeronthreshold | . .. . . . . T N B
E T - <
o N _ = —=— Trigger on peak ; s
= 04— — ° 1.2 N R S R
a) - - o [ 5 5 5
B m o — : : ¢
B ' s é s s
- - S A R S S D B
0.3 |— — 2 — : :
B u < — : u
_ - 0.8 ...................................... [ JSURRRURURUSUUIN SRRSO O UOSOS RRSSURRSOOE SRRSO
0.2 |— _ B
- - ] B Bl kil V==iib
01 |— — — : : : : : : :
- . O S e e s s S
0 _—H'———_J—J——l—I.J—I.-I—I-IJ-I—I-I—'J—!—I—!—I—LI.'—"—HHI—'H'__ 02_ L1 | [ T | [ T | [T T | [ T | [ T | | [ N | ]
0 ol 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 : 0 5 10 15 20 25 30
Strip Position [cm] Angle [Degrees]

* The performance of the architecture was demonstrated which gave a
significant reduction 1n the # of channels used 1n trigger (2.1M—33k)

* That among other studies allowed the biggest implementation of
MPGDs in HEP experiments !

oy, -
kf Er_oollthbavten T. Alexopoulos et al. - Performance of the First Version of VMM Front-End ASIC with Resistive
P Y Micromegas Detectors, ATL-UPGRADE-PUB-2014-001, https://cds.cern.ch/record/17533287In=en
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The VMM f{rontend evolution

George lakovidis 2020 J. Phys.: Conf. Ser. 1498 012051
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@ Mixed-signal

= Continuous readout

= Current-output peak detector
B @Increased range of gains
 (8kfch.) @ Three ADCs per channel
@FIFOs, serialised data with DDR

@ Mixed-signal

@2-phase readout with
external ADC

wpeak and timing
information

@neighboring readout

@sub-hysteresis
discrimination

=few timing outputs
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@ Serialised ART with DDR

@ Additional timing modes

@ 64 timing outputs

= Additional functions and fixes

BGA 400, 1mm

v« The VMM was designed at BNL in collaboration with IFIN-HH
v¢It is fabricated in the 130nm Global Foundries 8RF-DM
process (former IBM 8RF-DM)
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@ LVLO pipeline and buffering for ATLAS

@SEU-tolerant logic

@Revised front-end for high charge and
capacitance (2nF, 50pC, fast recovery)

@ SLVS signals

@Reset controls

= Timing at threshold

@ Timing ramp optimisation

@ lon tail suppressor (fast recovery)

@Int. Pulser range extension

& ART synchronisation to BC clock

@VMM3a fixed open bugs from VMM3 and
introduce some stability fixes on the ADCs and
Front-end

VMM3a - Production Version !

VMM3/3a
2015-2017
130mm?

10M FETs
(160k/ch.)

~10mW/channel


https://iopscience.iop.org/article/10.1088/1742-6596/1498/1/012051/pdf
https://ieeexplore.ieee.org/document/9724214

et George lakovidis 2020 J. Phys.: Conf. Ser. 1498 012051
rc l e c u re George lakovidis IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 69, NO. 4, APRIL 2022
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 The VMMI FE was mixed mode: charge, time measurements with external ADCs, channel address 1in digital output

« VMM?2 implemented the continuous digital readout logic through three ADCs/channel + direct digital outputs but
maintained the analog readout mode

« VMM3/3a implemented deep FIFOs (L0) for synchronous operation needed in the LHC environment maintaining
the analog, continuous and triggered readout modes

 Maintaining all the readout abilities made the VMM a very capable readout ASIC for many applications

Q‘\ Brookhaven
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The VMM ftrontend - issues along the path

e Power distribution issues
e Major ADC accumulation,
missing codes
* Major redesign of the * Residual accumulation in
> frontend - no bipolar shape ADCs
© .« ADC reset needed
* Threshold bit error

* MO sensitive

* High baseline residual issue
e Trimming DAC non uniform
T : * Reset logic - startup reset
e — e Positive charge handling

e Limited in gain
* Higher dynamic range

I

e Residual linearity of ADCs -

e Only analog » Timing logic good for MPGDs
implementation (limited G e 4x FIEO issue e BLH not stable - need bipolar
in rate) « Locking issue at 25ns shaping always on

* Fast baseline recovery e Stuck token in continuous mode \ % (workaround)

NS * Locking at direct outputs

e Input currents not sufficient " 4x FIFO only 1x, no issue
» Need larger ESD diodes * Higher ADC gain in central
e TAC at threshold logic

* Locking in several direct outputs

e ASIC must handle ~10pC (sTGC)

e Stability with high input
capacitance

* Peak detector issues

e BCID instabilities

VMM3a - Production Version !

e High dispersion of DACs VMM3 VMM3a
: : : 2015 2017

* Logic conflicts (direct outputs and 130mm? 130mm?2

high resolution ADCs) 10M FETs 10M FETs

(160k/ch.) (160k/ch.)

» Test pulse slow and not wide

enough
? Brookhaven * High baselines
L National Laboratory e Time Iogic

e SEU logic ~10mW/channel



Digital
Code 10—
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ADC Cells . L Code width
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ADC Core (per channel)
* 1024 current sources (similar to a digital thermometer) (2 step mode)

Analog Voltage

* 64 macro-shells (6 upper bits xxxxxx0000), 16 micro-shells (4 lower bits g 900
000000xxxx) 8,
_________ » * 8bit ADC is build in the similar way (5+3) 2 800
| ?‘3 * 6 bit ADC 1s a single stage conversion similar to the 64 macro shells with S 700
4 ° fast digitisation (50ns) T
4 E » Using DNL and INL calculated and used to estimate the ENOB °00
§ Equivalent number of bits ~7.5 (noise free) for the 10-bit ADC 500

* Performance was considered enough for gaseous detectors (schedule

—constrains as well) - moved to production 400

300 The non-linearity introduced by the
ADC is of the order of 2x10-5

The analog part is in the order of 10-7

1x micro-cell

200

100
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= g
Q Ea';?,gh?b?r\égg if you can find an ADC IP which has good performance...buy it! o




Performance highlights
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ation, when the source is not attenuated by any filter. The two lines Residuals [mm)]
show the different settings of the slh parameter [13] of the VMM
electronics, corresponding to a higher (slh = 1) or lower (slh = 0)
bias current at the input of the electronic channels.
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V. D’Amico et al - To be submitted
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The game of shaper

Authors

Theo Alexopoulos, Gianluigi de Geronimo , George lakovidis, Venetios Polychronakos

The VMM Shaper

The VMM “semi-Gaussian” shaper responds to an event with an analog pulse, the peak amplitude of

The time-domain representations (apart from the amplitude factor) of the shapers in Eq. (3) can be

-1
calculated as the inverse Laplace transform 7'(s) Loy (t):
f(t) — Kle—plt + Kze(—T2+j02)t + Kéke(—TQ—jcz)t
= Kje Pt g2t [K26j02t + Kéke_j”t}
= Kje P! 4 2¢7T209R (Kpel@2t) = Kie Pt 4 e 7722 (| Ky|e/Pede2t)

timewalk [ns]

25 ns

which is proportional to the event charge. The time needed to return to baseline after the peak, depends = Kye ™" + 2|Ksle™" cos (cat + ¢), where ¢ = ZK; 26 ANYYA 50 ns
on the the time constants and the configuration of poles. The VMM facilitates a 3'¢ order c-shaper with = KjePoleol 4 9| Ky le®Polert cos (Spole, t + LK) A
the combination of one real and two conjugate poles. The transfer function 7'(s) for such shaper is given where AAAAAA 1 00 ns
by the following expression: |y = 1 @) 1|2 = K,y 24 "
1 1 202\/(?1 - "‘2)2 +c3 AAA 200 ns
T(s) = = , n=3
(n+1)/2 2 . o (s+p1) [(s + o) + 02] K, = ! 29
(s +p1) il:[2 (s+7i)" +¢ 2 (poley — Rpole, ) + Spole? —
where n is the order of the shaper, and r;, ¢; are the real and imaging parts. The roots are: el e o e e P e e D e ey e
pet v SIS Pars: ' 20 40 60 80 100 120 140 160 180

If someone defines the normalized: H (f) = H (f) /7 which allows in our calculations, to take into account
the proportionality of H (f) to 7 (so that the integral, a measure of the amplitude, is independent of 7).

input charge [fC]

(8+T2)2+C§=0$S+T2:ﬂ:j02$82—7‘2ﬂ:j02

so the transfer function can be written with the simple fractions like :

K K K
T(s)= —— + + : (1)
(s+p1) (s+r2—je2) (s+r2+jca)
where one real pole, poley = —p; and the two complex poles, pole; = —ra+7jc2 and poley = —ra—jca = pj,
Rpole; = —ra, Spole; = cy. The coeflicients K; are :
1
K, = - -
(s + 12 —jc2)(s+ 12+ jc2) s=—p1
1 1
= - " - 2 97 € %
(=p1+ 72— je2) (—p1 + 12 + je2) (ro —p1)” + ¢35
1
Ky = ,
(S +p1) (S + T2 + ]62) s:—r2+j62
B 1
(=re —je2 +p1) (=13 +je2 + 25+ je2) (2)
1 .
= - " - K em, - AK ) € C
2jco (p1 —r2 + jc2) = ¢ ’
1
K3 = ;
T (s+p)(s+r2—jea) s=—rg—jcs
B 1
(=ro —jea +p1) (=72 +jca + 25— jeo)
1
—2jca (p1 —r2 — jc2) 2
From Eq. (2) the Eq. (1) will be:
K K K3
T(s)=—L + + 2 (3)
(s+p1) (s+r2—jca) (s+r2+jca)
1
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Through the normalization, the VMM shaper constants are :

a=10""%
1.263
poley = ——
«
1
pole; = (1.149 — 50.789) —
«
K, =1.584
Ky =—-0.792 — 0.1155
tpeak = 1.5cx

and the final function can be written in a computational form:

f(t) = a®|poley| (Ipole, |)? [Kle_tpC’le@ + 2| Ky|e™tRPoler ¢os (—tSpole; + LK)
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1 Micromegas frontend
2 sTGC frontends)

Front-end Electronics Requirements
e Challenge of this Project - More than 2.4 million channels total (2.1M for

MM L1DDC 512 Micromegas and 300k for sTGC) (full MS of ATLAS ~1.6M channels
sTGC LIDDC 512 e Operate with both charge polarities

Trigger electronics Ri?‘TL.lDDC 2; * Sensing element capacitance 50-200pF (sTGC Pad up to 3nF)

¢ HesH e Charge measurements up to 2pC @ < 1fC RMS(6pC for sTGC pads)

Router 256 . Ti ts ~ 200 <1 RMS

Readout Serial repeater 768 Ime_ meaSEjremen S B ns @ ns _
LVDS repeater 128 * Multiple Trigger primitives, complex logic
Direct clock 2 e Digitisation, deep FIFOs, Low power, programmable

' he detector
T P FELIX FPGAs 60 e Space requirements on t
kf National Laboratory Trigger 16 2 sectors each e Radiation tolerant 11

Processor G. lakovidis et al 2023 JINST 18 P05012
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Clock and Trigger Fanout (CTF)

Ethernet Network switch

SRS implementation

* SRS developments towards a VMM FE
implementation started 2014

Front-end card &
RD51 VMM hybrid DAQ computer

¢ VMM2 Was the ﬁrSt VerSiOn tO be integrated ASIC-specific adapter card

* Since VMM?2 1s an integrated FE ASIC 1t can TN e
provide digital output directly

* Implied an FPGA on the FE for the readout
and control of the VMM

» Implied a digital adapter card as well

Front-End Concentrator (FEC)

5x HDMI

* A lot of progress was made since then
implementing the VMM3/3a ASICs

* Power distribution changed as well, VMM 1s
demanding on power and sensitive to noise !
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Results from SRS developments
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, Figure 3. Measurement of the differential time resolution of the VMM3a (left). Illustration of the saturation
0 0 5 10 15 20 25 30 0 Oo 10 20 30 40 50 0 of the maximum readout rate for different token clocks [4, 13] (right). The dashed line (right) indicates the

x-Position (mm) x-Position (mm) theoretical maximum of the receivable hit rate.
Fig. 16. Image of a pen containing 17 x 10° clusters. The full data set contains 50 x 10°
clusters, that have been recorded in 30 seconds.

Fig. 17. Image of a dead mammal. The data set for this image contains 277 x 10°
clusters, that have been recorded in 180 seconds.

Expected interaction rate (MHz)
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(b) Frames of the rotating blades of a fan.
Figure 4. Measured X-ray interaction rate [4] (left). Time and spatial resolution (right) of a COMPASS-like

triple-GEM detector (threshold of 1.5 fC per readout channel). This measurement was performed with the

Fig. 18. Examples of the continuous data stream, which is sliced into frames, allowing RD51 VMM3a/SRS beam telescope at the CERN SPS using 80 GeV /c muons

fo reconstruct dynamic Pprocesses.
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In the TB of last weeks with NSW MMSs, one run of 300k events was completed in 4 sec 13
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Micromegas
Case

charge for all fired strips % of charge cut VS threshold

Kront end developments

Importance of Noise ! TR IR A
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NSW Integration
The importance of Power supplies E
* During integration a major noise issue was observed 1n the - : _
NSW electronics ; T
 After almost 1.5y the issue was attributed to high noise 100 -
(ripple) and non symmetric power lines on the power . L
supply
* Increased filtering and grounding mitigated the 1ssue ST oo

* The 1ssue though was not solved but patched !
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Production

 The VMM is produced in a 8” wafer with 2 copies of the chip in a reticle, total 113 chips / wafer
 During the production we faced several issues due to GF processing affecting the yield
* Many iterations with experts from Global Foundries to improve the yield and understand the issue
* Investigation concluded (HPT process maintained throughout the production for high density metal layers) = 4,4
« ATLAS has already produced and packaged 73k VMMs (incl. prototyping) 0%
 Many testing protocols have been produced for testing the devices
 Direct wafer probing was developed to allow initial screening of the production batch
« Half of the production was tested by manual operators (lengthy process)
e Due to constrains in time, we developed automated testing (30sec/device) which accelerated dramatically the process
» Throughout the process, 70% yield was achieved, 30% mainly due to ESD damage on input transistor or baseline
stabilizing circuit

Water probing I Tésting In Industry
o

P ’
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Remarks

 The VMM frontend took almost 8y of developments, was a difficult and expensive path with
many 1ssues along the line

* But successtul! NSW operates in ATLAS for the last 3 years
 Many other applications followed after NSW
* The SRS implementation allowed an even high number of applications

VMM is fully flexible and capable of high rates, can match many many requirements due to its
highly configurable parameters

 R&Ds should follow the big experiments, any integrated ASIC development 1s expensive !
* Foundry plays a big role in the production and even prototyping, field is evolving !

 Community lacks software and firmware developers as well as electronics engineers with
analog design skalls

* Implementation of highly complex electronics becomes more and more difficult

* Technology is evolving — Power distribution is a key element for low noise electronics, it
costed NSW almost 2y and continues to cost due to failures !

¢ Brookhaven
National Laboratory 17
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Input protection

» Since the VMM_2, we have experience major channel (initial NUP4114 1ssue). Moving to 130nm technology made the
requirements on mput protection higher. Current protection scheme based on the SP3004 seems 1nadequate to protect the

VMM front ends
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* A dedicated ESD testing procedure was lunched allowing a systematic test of the VMM 1nput.

* A VMM board (MMFE1) with Panasonic connector and a VMM socket was developed to perform systematic tests. On top
a Panasonic based connector daughter-board was built to test different protection schemes and different footprints.

» 220 pF capacitor emulates typical MM strip capacitance, a channel like this survived repeated discharges while without
protection 1s dead after a single discharge. Then survived zapping overnight (>30,000 discharges)

ESD Tester
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Packaging issue

 Why ?: The package bend when CTE (Coefficient of Temperature
Expansion) of the substrate is larger compared to the silicon or the
mold compound.

At the die attach cure temperature the substrate is then flat and
stress free connected to the silicon die.

* The warpage is then worse at the temperature farthest away from
the attach cure temperature i.e. room temperature.

* The reflow temperature will be higher than the die attach cure and
post mold cure temperature, so the warpage | expect to be
significantly smaller (and in the opposite direction) compared to
room temperature.

« IMEC/ASE though acknowledged the issue and proposed to
increase the mold thickness to 0.65 from 0.53
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developments
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VMM implementation in
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