

Salsa ASIC : Interfaces

Irakli Mandjavidze on behalf of the Salsa collaboration

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France

2nd DRD1 collaboration meeting & topical workshop on electronics 19/Jun/2024

Outlook

- Possible use cases for Salsa
- "Traditional" integration within a frontend
 → Heterogeneous interface
- "Alternative" integration scheme
 - \rightarrow Unified interface
- Example of envisaged integration in EIC readout
- Summary

• Setups of different nature

- \rightarrow Large collider experiments, moderate size fixed-target experiments, small standalone setups
 - Different level of integration depending on channel count and complexity of the experiment
- \rightarrow Repeating beam structure or continuous particle flow
 - Synchronous or asynchronous experiments w/ or w/o relationship between the system clock and physics events
 - Variety of clocks : 40 MHz @ LHC; 100 MHz @ EIC; 250 MHz @ CEBAF; 53 MHz @ Fermilab test facility; ...
 - More or less rich set of system level synchronous commands to interpret and follow

• Environmental differences

- \rightarrow Magnetic field, radiation, space limitation
 - More or less compact design with powering and cooling restrictions
- Differences in the readout strategies
 - \rightarrow Triggered or streaming or a mix of both
 - \rightarrow Contribution to trigger generation

Support for "traditional" prevalent interface

- Important number of heterogeneous external interface signals proper for each functionality
 - \rightarrow Clock_diff_in, SynCmd_diff_in
 - Synchronous commands decoding options in backup
 - \rightarrow SCL in, SDA io
 - Configuration of ASICs on a FE board in series : longer startup and recovery times
 - \rightarrow Up to 4 Data diff out serial links
 - \rightarrow Additional IOs like Trigger_diff_in, TrigPrim_diff_out
- May require an on-board companion "intelligence" for control & aggregation

Alternative "unified" interface

- Single encoded RX line for Clock, SynCmd, Trigger, configuration and monitoring
 - \rightarrow Minimal external interface: a single diff RX line + at least one diff TX line
 - Simplest case: only 4 pins (Rx_p / Rx_n + Tx_p / Tx_n) to communicate with the chip
 - Parallel configuration of ASICs possible : fast startup and recovery time
- Relatively complex initialization phase requiring collaboration from the remote partner
 - \rightarrow Clock recovery phase followed by
 - \rightarrow Data reception and transmission phase

<u>cea</u> irfu

Integrating unified interface in Salsa

- Low complexity CDR design in progress to check viability
- Work in progress on detailed specifications

- FEB frontend board with readout ASICs
 - \rightarrow Sub-detector specific
- RDO readout module first stage of FEB data aggregation, last stage to dispatch clock & control
 → Mostly common design framework between sub-detectors, different form factor
- DAM data aggregation module interface with computing and global timing and control unit (GTU)
 → Common design for all sub-detectors
- Downstream towards detector : clock, control, monitoring
- Upstream towards storage : physics, calibration, monitoring data

EIC example : 256-channel FEB with optical interface

• FEB

cea irfu

- → ASICs directly connected to 4-lane bidirectional parallel optic FireFly transceivers from Samtec
 - Single 1 Gbit/s Rx line encoding clock, sync run-control and asynchronous slow control and monitoring commands
 - Single 1 Gbit/s Tx line for physics, calibration, control and monitoring data
- \rightarrow Low active component count
 - Easier to adapt to challenging on-detector environment
 - Samtec FireFly : reported to stand TID of 50-100 krad and neutron fluence of at least 5x10¹¹ n_{eq} / cm²
- Optimal tradeoff between complexity of the on-detector electronics and its power consumption

Data to Salsa over the serial RX link

• Illu	istra	ation	Of Contin	embedded clock-command downstream line P - Parity bits inuous 12-bit train with 0-to-1 transitions Image: command bits 8 6 7 5 4 3 2 1 0 11 10 9 8 6 7 5 4 3 2 1 0 11 10 9 8 6 7 5 4 3 2 1 0 11 10 9 8 6 7 5 4 3 2 1 0 11 10 9 8 6 7 5 4 3 2 1 0 11 10 9 8 6 7 5 4 3 2 1 0 11 10 9 8 6 7 5 P2 P1 P0 ASC SC:4 SC:3 SC:2 SC:1 SC:0 0 1 P3 P2 P1 P0 ASC SC:4 SC:3 SC:1 SC:0 0 1 P3 P2 P1 P0																											
	11	10	9	8	6	7	5	4	3	2	1	0	11	10	9	8	6	7	5	4	3	2	1	0	11	10	9	8	6	7	5
	0	1	Р3	P2	P1	PO	ASC	SC:4	SC:3	SC:2	SC:1	SC:0	0	1	Р3	P2	P1	PO	ASC	SC:4	SC:3	SC:2	SC:1	SC:0	0	1	Р3	P2	P1	P0	ASC
Recovered <mark>system clock</mark>	1		•		•		_																		l						
Derived RX clock	\Box																												\Box		

- → Periodic 0-to-1 transition for system clock recovery and jitter cleaning in the Prisme PLL IP
 - Inspired from original idea in

D. Calvet, Clock-Centric Serial Links for the Synchronization of Distributed Readout Systems, IEEE TNS, V 67, N 8, 2020

 $\rightarrow\,$ Hamming error detection and recovery bits

■ Use of Reed Solomon RS(7,5) code is considered but requires higher link speeds

- \rightarrow Up to 32 synchronous commands at every system clock cycle
- Link bandwidth for typical system clock frequencies
 - → 40 MHz @ CERN : 480 Mbit/s
 - Potential to transmit 20-bit asynchronous slow control commands @ 2 MHz
 - $\rightarrow~$ 100 MHz @ EIC : 1.2 Gbit/s
 - Potential to transmit 20-bit asynchronous slow control commands @ 5 MHz
 - Considering a protocol with lower number of bits per system clock cycle
 - Lower link speed easier integration with low end FPGAs

cea irfu

irakli.mandjavidze@cea.fr

Data from Salsa over the serial TX link

- Fixed 40-bit length transmission units
 - \rightarrow 32-bit user payload + 8-bit FEC
 - (6+1)-bit Hamming with possibility to detect 2 errors and correct 1 error
 - RS(15,13) Reed Solomon is considered with possibility to correct 4 errors
- Salsa packets transmitted word by word
 - \rightarrow 20% overhead due to FEC
- Illustration on Salsa packet with signal samples
 - \rightarrow Packet type and chip identifiers
 - \rightarrow Channel
 - \rightarrow Timing binds samples to system clock
 - Sampling and system clocks might be different
 - Frequency and phase
 - \rightarrow Succession of 12-bit ADC values
 - \rightarrow Information on processing of samples
 - *e.g.* Raw, ZS, due to neighboring logic
- Example of a slow control packet in backup

40 39				9	8	7		0				
Type: Sample	e data	Chip I		FEC		Header word						
Cha	nnel ID, #	# of san		FEC		Channel word						
	Tim	ing	FEC			Timing word						
Flags	Samp	ole 2	Sa	imple	e 0		FEC		Sample word			
							FEC		Sample word			
Flags	Samp	ole N	Sar	nple	N-1		FEC		Sample word			

40-bit transmission unit

32-bit user data 8-bit FEC

Summary

• If successful, flexibility in Salsa integration

Salsa N

Salsa ..

Salsa 2

Salsa 1

 \rightarrow Support for local companion ASIC

Clk & Cmd

Data

12C

Aggreg.

and

(FPGA.

lpGBT)

control

- → Low pin count unified interface : potential to control and aggregate data from a large number of ASICs
- \rightarrow Less than 1 Gbit/s links to interface with standard FPGA IOs and SERDES IPs
- \rightarrow Wide range of system clock choices with Prisme mixed analog-digital PLL IP
 - 40 120 MHz with aimed recovered clock jitter better than 10 ps RMS
- Work well advanced to fix specifications
- Prototypes under development and tests
- Appeal to DRD1 collaboration to understand the access conditions to the CERN radiation facilities
 - \rightarrow Validate radiation tolerance of the design

Backup

²²² ^{irfu} Traditional interface : detecting synchronous commands every clock cycle

- Distributed clock must be a multiple of system clock to decode N-bit synchronous command
 - SDR mode: N * SysClock
 - DDR mode: N * SysClock / 2
 - $\rightarrow\,$ System clock phase needs to be recovered
 - Reserved bit field with a unique bit pattern
- LHC example : 40 MHz bunch crossing clock
 - \rightarrow 320 MHz distributed clock with 320 Mbit/s synchronous command line
 - \rightarrow 8-bit synchronous command sequence @ every bunch crossing
- EIC example : 100 MHz bunch crossing clock
 - Reminder : no IpGBT equivalent ASIC use of COTS FPGAs for a subset of its functionality
 - \rightarrow 8-bit synchronous commands would require 800 MHz clock distribution
 - \rightarrow A possibility : 300 MHz distributed clock with 600 Mbit/s DDR interface for commands
 - 6-bit recovered sequence would allow decoding of 16 different commands
 - \rightarrow High rate clock distribution regarded as impractical by the collaboration
 - \rightarrow 16 unique commands might be not enough either

²²² ^{irfu} Traditional interface : bit-by-bit aggregation of synchronous commands

- System clock is distributed to ASIC
 - \rightarrow Requires N clock cycles to construct N-bit synchronous command
 - Arrival time of the very first bit determines command timing
- EIC example : 100 MHz bunch crossing clock
 - \rightarrow 8-bit sequence determines 6-bit command
 - \rightarrow Synchronous commands can be received every 8th BX
 - 150 commands per EIC revolution
- Triggered readout requires special arrangement
 - \rightarrow SDR interface imposes dead time if trigger is one of the synchronous commands
 - Dead-time : N x system clock period
 - \rightarrow DDR interface alleviates the problem

Unified interface : data to Salsa : low bit error ratio

• EIC example : 1 Gbit/s RX line

cea irfu

- \rightarrow 100 MHz embedded clock
- \rightarrow 8-bits per bunch crossing
 - Horizontal parity bit
 - Asynchronous slow control and monitoring bit
 - 6 bits for synchronous commands

Illustration of embedded clock-command line

9	8	7	6	5	4	3	2	1	0	()-to-	·1 tr	ansi	tion	for	syst	em	cloc	k re		ery								
0	1	ΗР	ASC	SC:5	SC:4	SC:3	SC:2	SC:1	SC:0	0	1	ΗP	ASC	SC:5	SC:4	SC:3	SC:2	SC:1	SC:0	0	1	ΗP	ASC	SC:5	SC:4	SC:3	SC:2	SC:1	SC:0

 \rightarrow Periodic 0-to-1 transition for system clock recovery in the Prisme PLL IP

- Inspired from original idea in D. Calvet Ref.
- \rightarrow Potential to have up to 64 synchronous commands
- \rightarrow Potential to transmit 20-bit slow control commands @ 5 MHz
- Reality is more complex especially to ensure SEU recovery
 - \rightarrow Larger error correction code, lower number of synchronous commands

HP – horizontal parity ASC – asynchronous slow control bit SC – synchronous command bits

Unified interface : data from Salsa over the serial TX link

40-bit transmission unit

- Fixed 40-bit length transmission units
 - \rightarrow 32-bit user payload + 8-bit FEC
 - 7-bit Hamming with possibility to correct 2 errors
 - RS(15,13) Reed Solomon is considered with possibility to correct 4 errors
- Salsa packets transmitted word by word
 - \rightarrow 20% overhead due to FEC
- Illustration on Salsa packet with response to registry read slow control request
 - \rightarrow Packet type and chip identifiers
 - \rightarrow Start address

irfu

Cea

 \rightarrow Values read from successive registers

		J J	ŕ		U					
Type: <mark>Slow co</mark> l	ntrol Chip I	D, length		FEC		Header word				
Reg[Adr]	Star	t Adr		FEC		Address word				
Reg[Adr + 3]	Reg[Adr + 2]	Reg[Adr + 1]		FEC		Value word				
				FEC		Value word				
Reg[Adr + n]	Reg[Adr + n-1]	Reg[Adr + n-2]		FEC		Value word				

32-bit user data 8-bit FEC