

Versatile Link+ / lpGBT overview 2nd DRD1 Collaboration Meeting

Stefan Biereigel (stefan.biereigel@cern.ch)

Versatile Link+ Project

High-speed, radiation-tolerant optical links for (HL)-LHC experiments

• Recurring challenge, similar needs in many detectors & experiments

VL+ project: common development of 'standardized' link components

- Successor to Versatile Link project (GBTX, VTRx, ...)
- One link for TT&C (Timing, Trigger & Control)
- Covering rad-hard ASICs, front-end modules, passives, back-end support

Today: Introduction to VL+ links & lpGBT ASIC

Versatile Link+ Architecture

lpGBT – Main Feature Set

High-speed links (back-end 🔂 lpGBT)

- Uplink: 5.12 or 10.24 Gb/s
- Downlink: 2.56 Gb/s

Electrical links (lpGBT 🔂 front-end)

- Up to 28 (up) + 16 (down)links, 80 Mb/s 1.28 Gb/s per link
- Low-voltage differential I/O links (CLPS = CERN Low Power Signalling)
 - Pre-emphasis & equalization provided to manage signal integrity
- Phase-aligner for data from front ends (automatic or manual)

Timing functionality

- Deterministic & fixed latency (for clocks & data, both directions)
- Frequency-programmable clock outputs (40 MHz 1.28 GHz)
- Phase- and frequency-programmable clock outputs (50 ps step size)
- Low jitter (<5 ps rms)

Pin count: 289 (17 x 17) Pitch: 0.5 mm Size: 9 mm x 9 mm x 1.25 mm

19 June 2024

VL+ Introduction | Stefan Biereigel

IpGBT – Block Diagram Overview

19 June 2024

VL+ Introduction | Stefan Biereigel

lpGBT – Main Feature Set

Experiment Monitoring & Control

- 3x I2C masters, 16 CMOS GPIOs
- Factory-calibrated analog subsystem
 - 8-channel, 10 bit ADC
 - 8 bit current DACs (e.g. for PT-1000)
 - 12 bit voltage DAC
 - Reference voltage generator
- Extensible using external slow control ASIC (GBT-SCA)

Configuration

- Power-Up State Machine, Automated ROM start-up, Watchdog, BOR, ...
- User configuration via optical link, I²C or serial control channel
- READY & RESET signal generation for downstream ASICs

C POPIX-OUT

Pin count: 289 (17 x 17) Pitch: 0.5 mm Size: 9 mm x 9 mm x 1.25 mm

IpGBT – Radiation Tolerance

IpGBT ASIC manufactured in 65 nm CMOS

• Technology resistant to TID-effects, widely adopted for HL-LHC

Protected against single-event effects (SEU, SET) by design

- Configuration, control logic, clock generation covered by TMR or RHBD methods
- Data links protected using forward error correction (FEC) two modes available (tradeoff bandwidth/data protection)

SEE and TID response fully characterized (e.g. expected error rates, etc)

• TID response is being screened for all production lots, spec: 2 MGy (200 Mrad)

VTRx+ Optical Link Module

Off-the shelf optical modules not compatible with ondetector applications

• Form factor, radiation tolerance, ...

VTRX+: Custom Module - Key Specifications

- 850 nm multi-mode fiber, 4 (uplink) + 1 (downlink) channels, data rate compatible with lpGBT
- Miniaturized: 20x10x4 mm
- Pluggable: board-to-board connector (electrical), fiber pigtail (optical, made to order)
- Temperature range: -30 60°C
- TID: 1 MGy (100 Mrad), 10¹⁵ n/cm²

VLDB+

Demonstrator board for VL+

- 'Batteries-included' demonstrator board for full system
- On-board: lpGBT, VTRX+, DC/DC regulators
 - Access to clock & data in/outputs, analog and digital I/O
 - Dual HPC FMC connectors allows prototyping with FEB or FPGA development kits
- Raspberry Pi-based control toolkit
- More information: https://vldbplus.web.cern.ch/

System Integration Support

IpGBT is a custom, complex device – requires support ecosystem

- IpGBT-FPGA: Open source FPGA IP core
 - Implements data encoding/decoding, configuration links, etc
 - Can be included in FPGA back-end systems, compatible with various FPGA families
 - Provides transparent user data bridge, configuration access, etc
- lpGBT control library: Python-based driver library
 - Reference implementation, to be integrated or adapted by users
- Support forum/mailing list for users, place for discussion: https://lpgbt-support.web.cern.ch
 - User base ~ 500 people, dedicated support team for following up issues

The Future

VL+ components designed for the HL-LHC upgrade

 Manufactured in quantities demanded by experiments (~50-300k units)

R&D in progress to develop new HEP links (e.g. EP R&D WP6, DRD7)

- Higher luminosities, detector resolutions, addition of timing → increase of data rate & radiation dose
- Current ambitions: 10 Gb/s → 100 Gb/s per fiber (WDM, 4 x 25 Gb/s), 1 MGy → 10 MGy
 - New technologies: Silicon photonics, 28 nm CMOS

The Future

VL+ components designed for the HL-LHC upgrade

 Manufactured in quantities demanded by experiments (~50-300k units)

R&D in-progress to develop new HEP links (e.g. EP R&D WP6, DRD7)

- Higher luminosities, detector resolutions, addition of timing → increase of data rate & radiation dose
- Current ambitions: 10 Gb/s → 100 Gb/s per fiber (WDM, 4 x 25 Gb/s), 1 MGy → 10 MGy
 - New technologies: Silicon photonics, 28 nm CMOS

Resources

lpGBT manual: https://lpgbt.web.cern.ch or https://cds.cern.ch/record/2809058/ lpGBT-FPGA documentation: https://lpgbt-fpga.web.cern.ch lpGBT / VL+ ordering information: https://ep-ese.web.cern.ch/project/lpgbt-and-versatile-link VLDB+ documentation, ordering information: https://vldbplus.web.cern.ch Versatile Link+ project: https://cern.sharepoint.com/sites/project-Versatile-Link-Plus/ Communications ASICs overview: https://gbtproject.web.cern.ch/gbtproject/

Note: Access to some of these pages are guarded by eGroups, can be granted by request

