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● Increase of the number of 

the neutron spallation 

sources.

● 3He Shortage

Request of new devices 

capable to combine high 

detection efficiency and low 

costs

Introduction
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ESS (Lund)

Start in 2024 

22 instruments to be 

built 

New spallation source

Operative spallation source

ISIS (UK)

19 instruments at TS1

12 instruments at TS2



GEM detectors features:

● Very high rate capability (MHz/mm2 )

● Good space resolution (order of μm)

● Time resolution of ns.

● Possibility to be realized in large 

areas and in different shapes.

● Radiation hardness.

● Low sensitivity to gamma rays.

GEM detectors need a neutron converter.

GEM detectors
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Neutron detection

Knoll “Radiation detection and measurements”

Mostly based on three nuclear reaction:

n +10 B → ቊ𝛼 +
7 𝐿𝑖

𝛼 +7 𝐿𝑖∗

n + 3He → 3H + p Qval = 0,764 MeV, σ = 5330 b

σ = 3840 b

Qval = 2,792 MeV (g. s)

n + 6Li → 3H + α Qval = 4,78 MeV, σ = 940 b



The I-MS-BGEM detector
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Multiplication 
region

Conversion 
region

The detector is composed of two stacks:
- The conversion stack
- The multiplication stack

The conversion stack must have a
unitary gain, in order to:
● Have the same response inside the

region.
● Avoid discharges.
The electron multiplication must
happen only inside the multiplication
region.

The way to set an unitary gain is to
determine an appropriate detector
working point.
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BGEM foil manufacturing
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BGEM foil manufacturing
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Detector Realisation
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BGEM foil 
stretching BGEM foils 

stack placed 
inside the 
faberglass box

Padded 
anode

The detector 
with the 
GEMINI 
readout



Characterisation at ISIS
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ISIS Neutron and Muon Source (UK)



Characterisation at ISIS
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● Use of the VESUVIO spectrometer
● Thermal and epithermal neutron 

beam from 0,02 up to 150 eV.

● n flux of ≈ 107
𝑛

𝑠∗𝑐𝑚2

● Use of Time of Flight (ToF) 
technique.

● 6MBGEM detector placed at 12,6 m 
from target and at 40 cm from the 
VESUVIO transmitted beam 
monitor.

● The VESUVIO transmitted beam 
monitor is a 6Li-based scintillator 
(GS20 detector).



I-MS-BGEM detector
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𝐸𝑛 =
𝑚𝑛

2

𝐿2

𝑡𝑇𝑜𝐹
2

ToF spectra Energy spectra



I-MS-BGEM detector
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“Trkov, Andrej. (2015). Nuclear Reactions and Physical Models for Neutron 

Activation Analysis. Journal of Radioanalytical and Nuclear Chemistry.”

Cadmium Black Resonance at 0,5 eV. 𝛾 =
𝐴𝑟𝑒𝑎 𝑖𝑛𝑠𝑖𝑑𝑒 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ 𝐶𝑑 𝑚𝑎𝑠𝑘

𝐴𝑟𝑒𝑎 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐶𝑑 𝑚𝑎𝑠𝑘

𝛾 = 1,36 ± 0,06 ∗ 10−5
𝛾

𝑛

Cadmium total neutron cross section ToF spectra



I-MS-BGEM detector
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• Measurements conducted with the use of a Cd mask with a hole of 6 mm of diameter.

• Measurement time of 2 minutes and 10 minutes between each run.

• The measurements have been normalised for a reference run.

Detector stability 

of 99%



I-MS-BGEM detector
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𝜀6𝑀𝐵𝐺𝐸𝑀 =
𝑐𝑜𝑢𝑛𝑡𝑠6𝑀𝐵𝐺𝐸𝑀

𝑐𝑜𝑢𝑛𝑡𝑠𝐺𝑆20
∗ 𝜀𝐺𝑆20

● Measurements conducted with the use of a Cd mask

with a hole of 6 mm of diameter.

● The measurements obtained with the 6MBGEM and the

GS20 detector have been performed with the same

experimental conditions.

● The efficiency has been estimated with:

At 1,8 Å (25 meV) the I-MS-MBGEM 

efficiency is 16%

εGS20 = 0,6% at 82 meV

𝐸𝑛 =
𝑚𝑛

2

𝐿2

𝑡𝑇𝑜𝐹
2

𝜆 =
ℎ ∗ 𝑡𝑇𝑜𝐹
𝑚𝑛 ∗ 𝐿𝐸𝑛 =

ℎ𝑐

𝜆



Conclusions
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● The I-MS-BEGM detector has 
shown a good response at 

thermal and epithermal 
neutrons:
 Counting rate stability during a 

long period of measurements of 

99%.

 Gamma insensitive factor in the 

order of 10-5 ϒ/n.

 Detection efficiency of 16% at 1.8 Å.

● The next step will be the use of 
the BGEM foils coupled with a 

strip anode for imaging 
measurements.



Thank You for your attention
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