

DEVELOPMENT OF A NEW ASD-ASIC FOR DRIFT-TUBE AND STRAW DETECTORS

N. Bangaru, D. Cieri, F. Fallavollita, O. Kortner, S. Kortner, H. Kroha, G. Proto, R. Richter, E. Voevodina, Y. Zhao

18.06.2024, DRD1 Week

Drift-tube and straw-tube detectors at the FCC

FCC-ee

- ▶ In order to achieve $\sim 1\%$ momentum resolution for charged particles up to 50 GeV, a combination of low X_0 silicon and gaseous detectors is envisaged.
- ▶ One option for the gaseous detector: straw-tubes with diameters ~ 10 mm.

FCC-hh

- \triangleright Baseline muon system instrumented with single layer of small diameter muon drift-tube (sMDT) chambers up to $|\eta| = 3.0$.
- \triangleright Target angular resolution: 70 μ rad achieved by placing two quadruple layers of 15 mm diameter tubes at 1.5 m distance.

Operating conditions at the FCC-hh

One quadrant of the FCC-hh reference detector

 \Rightarrow Counting rates up to 1 MHz/tube expected.

Performance limitations from the read-out electronics

Reference: ATLAS phase-II electronics

- ASD ASIC in 130 nm GF CMOS technology.
- 12 ns peaking time with bipolar shaping.
- Background hits mask muon hits with the dead time of the electronics leading to reduced muon efficiencies.
- \triangleright Signal pile-up deteriorates the spatial resolution at high background rates.

New ASD chip

- ▶ 65 nm TSMC CMOS technology.
- \blacktriangleright Faster baseline recovery of the bipolar shaping scheme to reduce the pile-up effect.

New ASD chip in 65 nm CMOS technology

- ▶ Four-channel Amplifier Shaper Discriminator designed by the MPI for Physics and fabricated in 65 nm TSMC CMOS technology.
- Bipolar shaping selected to avoid baseline shifts at high background hit rates.
- Discriminator with LVDS output.
- ▶ Power consumption per channel 12.8 mW (61% lower than the power consumption of the ATLAS phase-II ASIC).
- 0.235 mm² area/channel.

Response of the new ASD chip

δ response functions $\frac{4}{3}$ 0.3
 $\frac{1}{2}$ 0.25
 $\frac{1}{3}$ 0.2 - ATLAS phase II chip - New 65 nm chip 0.15 0.1 0.05 -0.05 $-0.1\frac{E_{\perp}}{0}$ $\overline{50}$ 100 150 200 Time [ns]

- Same peaking time of the new chip as the ATLAS phase-II chip.
- Faster baseline recovery of the new chip.

Fast pulse shaping of the new chips allows us to destinguish different primary ionization clusters.

Test of the new chip on an sMDT chamber in the GIF++

Test-beam set-up

Electronics Connected to the sMDT Chamber

- One 65 nm ASD chip on a prototype PCB connected to 4 tubes.
- Rest of the tubes read out with the ATLAS phase-II chip.
- Coincidence of GIF++ scintillators used as beam trigger.

Dead time comparison

The distributions of the time difference of two consecutive γ hits shows that the new chip has a much shorter dead time than the ATLAS phase-II chip: 40 ns vs 140 ns.

Muon detection efficiency comparison

- ▶ Much higher efficiency obtained with the new chip than with the ATLAS phase-II chip thanks to the reduced dead time.
- Slightly higher efficiency of the new chip at 0 background rates due to a lower discriminator threshold.

Spatial resolution comparison

- ▶ Measured spatial resolution values compatible with the prediction from the Garfield simulation.
- ▶ Resolution achieved with the new ASD chip about 10 μ m better than with the ATLAS phase II chip (mainly thanks to the lower discriminator threshold).
- 100 μ m spatial resolution even at 1 MHz background count rate.

Conclusions and outlook

- ▶ A new ASD chip with fast baseline recovery and reduced dead time has been developed.
- \triangleright Test of this chip on a chamber in the GIF++ shows excellent performance of the new chip in terms of muon detection efficiency and spatial resolution.
- Next steps:
	- \blacktriangleright Use the chip for the read-out of straws.
	- \triangleright Optimize the shaping for the read-out of straws.