

L7=48 18ur

L5 = 48.27

Irradiation effects on GEM detectors operated at RUN1 and RUN2 at the LHCb experiment

M. Poli Lener

<u>Old GEM group:</u> M. Alfonsi, G. Bencivenni, W. Bonivento, A. Cardini, P. de Simone, F. Murtas, D. Pinci, D. Raspino, B. Saitta, ⊕ N. Bondar, D. Brundu, M. Giovannetti, G. Morello

EN-MME-MM CERN: A. T. Perez, S. Sgobba

OUTLINE

- GEM detectors in the LHCb experiment
- Used materials for the detector production
- ➢ Global irradiation test @ ENEA Casaccia with ⁶⁰Co source in 2004 (reminder):
 - Results
 - Tests on high irradiated chambers
 - Scanning Electron Microscope (SEM) and Elemental composition analysis (EDS-Energy dispersive Spectroscopy) performed by EN-MME-MM CERN Group ^(*)
- Irradiation effect after the operation at LHCb (2010-2018):
 - SEM analysis
 - EDS spectroscopy
- Summary and outlook

GEM detectors in LHCb

The detector gas is supply by polypropylene (~30 cm) & Cu tubes. The gas mixture is analysed with a gas chromatographer and a water and oxygen measuring system

Station efficiency in 25 ns @ LHCb

12 stations around the beam pipe composed of 2 Triple-GEM OR r/out ^(*) GEM detectors operated in Ar/CO2/CF4=45/15/40 during RUN1 & RUN2 (2010 to 2018):

- particle rate of 200-300 kHz/cm2
- efficiency ≥96% in the single BX (25 ns time window)
- gas gain of ~4000

^(*) More details on the Davide's presentation 8th Nov 14:50 "The LHCb Triple-GEM Detectors: Operational Experience"

M. Poli Lener

ASSEMBLY Procedure

The whole detector assembling is performed in a clean room class 1000

GEM FRAMING/ANODE preparation

Before gluing the frame (**FR4**) is checked again for broken fibers, cleaned with isopropyl-alcohol and dried with nitrogen flow.

Araldite 2012 epoxy is applied with a rolling wheel tool on the frame. A glue rim is also applied on the ANODE gas insert. Araldite 2012 work life: 4 minutes; curing time: 2 hours.

CHAMBER ASSEMBLY

The chamber assembly procedure is divided in 2 steps. Epoxy araldite **AW103 + HY991** is applied with the usual rolling wheel tool on framed GEMs.

One after the other the 3mm, 1mm, 2mm framed GEMs, plus an additional bare 1mm-frame (induction gap), are positioned on the cathode PCB panel.

The assembly operation is performed on a machined ALCOA reference plane. Over the whole structure a load of 40 kg is uniformly applied for 24h, as required for epoxy polymerization.

Summary of the used materials (in contact with gas mixture)

Material	Туре	Note
ARALDITE 2012	Ероху	GEM framing & gas inserts passivation (only ANODE)
AW103 + HY991	Compounds	Det. Assembly & sealing
FR4		Frame
Gold plated PCB	Rigid Material	Anode & cathode surfaces
FR4 & Brass		Gas Insert
Polypropylene & Cu tubes	Piping	
Cu + Kapton	Flexible Material	GEM base material

More information on Outgassing/Effect on detector are reported in: <u>https://detector-gas-systems.web.cern.ch/Equipment/outgassing.htm#plastic</u>

Casaccia Global Irradiation Test in 2004 (reminder)

Global stability test: setup

A full size ($20x24 \text{ cm}^2$) prototype (C) in low irradiation position ~ 1 MHz/cm², 2 full size prototypes in high irradiation position: ~ 15 (chamber A) and ~ 20 MHz/cm² (chamber B) Ar/CO2/CF4 (45/15/40) at gain ~ $6x10^3$ & 35 irradiation days

ENEA - Casaccia

Ambiental parameters: H2O (\pm 1ppm), T (\pm 0.1°K), atmospheric P (\pm 0.1mbar) Gas flows: C \rightarrow B \rightarrow A \rightarrow T/H2O Probe -> Out initially Φ gas= 200 cc/min, then Φ gas= 350 cc/min Gas inlet line \rightarrow stainless-steel tubes Exhaust gas line \rightarrow polypropylene tubes (not hygroscopic)

Global aging test: results

Integrated charge:

detector C ~ 0.16 C/cm² \Leftrightarrow 1 LHCb y

detector B ~ 1.6 C/cm² \Leftrightarrow 8.5 LHCb y

detector A ~ 2.2 C/cm² \Leftrightarrow 11.5 LHCb y

High-irradiated chambers exhibit a drastic current drop during the test $A \rightarrow -89\%$ $B \rightarrow -80\%$

Chamber C as well as **X-ray** results show no current drops after an integrated charge of **0.16 C/cm²**, while Chamber A & B show Δ G/G ~ -10% after the same integrated charge !

Preliminary conclusions

The obtained result was due the **low gas flow rate** (**350 cc/min**, the maximum flow reachable with our mass-flowmeters) \Rightarrow **LOW with respect to the very high particle rate** (~ 15-20 MHz/cm² equivalent m.i.p. on the whole detector area \Leftrightarrow 400-500 µA)

high-irradiated chambers suffered of **gas mixture pollution** \Leftrightarrow submitted **to a strong plasma etching due to F** (CF₄fragmentation) **not quickly removed by the gas flow**

Several tests and checks on aged chambers to understand the aging process have been performed:

- gain and rate capability measurements with X-rays
- performance at beam test
- reproducing the low gas flow effect observed at Casaccia
- SEM & EDS analysis

Test on aged chambers

Aged chambers exhibit NO rate capability loss up to ~**3MHz/cm²** (expected LHCb rate ~0.5MHz/cm²)

Test on aged chambers

Aged chambers exhibit NO rate capability loss up to ~**3MHz/cm²** (expected LHCb rate ~0.5MHz/cm²)

Chamber A (with the larger gain loss) shows ONLY a shift of the working point of ~15V

Test on aged chambers

Aged chambers exhibit NO rate capability loss up to ~**3MHz/cm²** (expected LHCb rate ~0.5MHz/cm²)

Chamber A (with the larger gain loss) shows ONLY a shift of the working point of ~15V

To reproduce the Casaccia test results, a small chamber has been irradiated with X-rays (total current $\cong 2 \ \mu A \ on \cong 1 \ cm^2$ irradiated spot) flushed with a low gas flow rate (**20 cc/cm**)

A current drop of ~ 40% for a 0.55 C/cm² integrated charge (~3 LHCb years) is found on the low gas flow measurement

SEM analysis & X-ray spectroscopy on aged chambers

Fluorine etching not only widens the copper hole, but also removes the Kapton inside the hole

13

Fluorine found on the **bottom side of G2** and G3 \Rightarrow Cu-F compound forming a thin insulating layer No fluorine on top side of GEM 500 ECH. 11 RASPINO -- DENCIVENNI PH Energy (ke 71 um 64 um 94 um Cu-F thin insulating layer on bottom side of GEM

Fluorine etching explains observed effects

The effects of fluorine etching is twofold:

1) widening of amplification holes gain reduction (*)

2) Cu-F compound forming an insulating layer near the hole

enhanced charging-up effects

rate capability reduction

(*) S.Bachmann et al., NIM A 438(1999), 376-408

Irradiation effect @ LHCb

15

GEM detectors operation @ LHCb

GEM detectors operation @ LHCb

Current up to 5 μ A with beam collision

Station A15A1 (two GEM detectors called RIGHT & LEFT) has recently analysed after RUN1&RUN2

```
439 days colliding beams @ <\Phi>\sim 250 kHz/cm<sup>2</sup> @ G ~ 4*10<sup>3</sup>
```

 \rightarrow Q_{int}~300 mC/cm²

Gas enters on the anode of the **RIGHT chamber** and exit on its cathode.

Gas enters on the cathode of the LEFT chamber and exit on its anode.

GEM Analysis @ CERN

Microscopic examination of triple-GEM detectors after installation and operation on LHCb with CF4-based gas mixture https://edms.cern.ch/document/2802473/1

18/06/2024

operation,

the anode

M. Poli Lener

Elemental composition analysis by EDS on the hole surrounding area on zone B (GEM#1). The results are presented in wt. % and normalized

M. Poli Lener

18/06/2024

19

GEM #2 RIGHT analysis

SEM images of the GEM#2 aspect on zone D.4

Chemical analysis by EDS on the hole's surrounding areas pointed out a small increasing content of C, N, **S** (~10%) when approaching the hole's edge

Holes and Cu surface are homogenous

Elemental composition analysis by EDS on the hole surrounding area on zone D.4 (GEM#2). The results are presented in wt. % and normalized

GEM #3 RIGHT analysis

A.3)

Bottom view

Micrometric particles are visible surrounding the holes

The **hole's edges** appear **rougher** as well as **the Kapton** into the holes

OM and SEM images of the GEM#3 A.2 zone

21

Chemical analysis by EDS on the hole's surrounding areas pointed out an increasing content of C,N, **F** (<2%) and S (<12%) when approaching the hole's edge

18/06/2024

GEM#3

Zone A = Outlet

M. Poli Lener

Zone B

Elemental composition analysis by EDS on the hole surrounding area on zone B (GEM#3). The results are presented in wt. % and normalized

Sulphur residual on the bottom of GEM #3 RIGHT

CERN.

FIB-SEM inspection confirmed that the residue observed on the hole's edges is also deposited into the hole internal surface covering the Kapton and modifying the hole's geometry:

Bottom view

A.3) A.2)

- A.1 ~ 2 μm,

GEM#3

Zone A = Outlet

- A.2 ~ 1 μm,

18/06/2024

- A.3 nanometric

M. Poli Lener

Sulphur residual in a hole of GEM#3

Zoom of A.1 hole inside the stained area of GEM#3

A **thinner deposit at the bottom** of the hole suggests a potential direction of the flow contamination

SEM images of the hole cross section on GEM#3 location A.1

GEM Ch. LEFT analysis

SOLT THAT Inter Line and Line Mar Bill And Post family OCERN

18/06/2024

M. Poli Lener

Search detection sulphur on ARALDITE 2012

Sample 2 - ARALDITE 2012

Sample 1 -ARALDITE 2011

The XRF analysis highlight presence of sulphur on the ARALDITE 2012 unlike sample 1 ^(*). **Material Safety Data Sheet** shows that the molecule 2.2' used for the **hardener** was composed with thiol chemical function (R-SH): the sulphur can come from it because during the **reticulation polymerization the sulphur remains present in the compound's skeleton**

M. Poli Lener

5.00

Summary & Outlook

The Casaccia high irradiation global test, with Ar/CO2/CF4=45/15/40, was understood :

- the F-etching observed is correlated with low gas flow
- F-etching effects mainly on the third GEM with fluorine deposits near the copper holes bottom edge

With Ar/CO2/CF4=45/15/40, the GEM detectors showed after a Q_{int}~300 mC/cm²: - sulphur residual deposit mainly on the third GEM, probably due to the outgassing of the ARALDITE 2012;

- no effect of F-etching on GEM;
 - → No major performance loss observed during LHCb operation
 - → < 100 nA dark current recorded on GEM#3</p>

The work on the GEMs chambers is not conclusive but has just begun:

- → Investigation of the chemistry of the sulphur in the detector operation
- → Look at possible **effects of sulphur** on other detector components (anode & cathode)
- ightarrow Analyzing other detectors installed @ LHCB is foreseen

We are very grateful to Anité and Stefano (EN-MME-MM CERN Group) for their excellent work

Many thanks for your attention

Aging summary

This table summarizes the detector anode current normalized to detector total gas flow.

It is clear from the table that heavily irradiated chambers at Casaccia were operated with a low gas flow to total_detector current ratio, which might have been the cause of the observed aging behavior.

Aging Test	Gas Flow (cc/min)	Total Current (µA)	R=Current/gas flow (**)
X-rays (*)	100	0.4 ÷ 0.8	0.004 ÷ 0.008
Casaccia C	350	36	0.10
Casaccia A , B	350	800 ÷ 1000	2.3 ÷ 2.9
LHCb M1R1	100	8	0.08
Sauli (Hamburg)	80	3 ÷ 12	$0.04 \div 0.15 \text{ (no } CF_4\text{)}$

(*) no global test.

(**) might also depends on irradiation spot and chamber volume.

To reproduce the Casaccia test results, a small chamber has been irradiated with X-rays (total current \cong 2 μ A on \cong 1 cm² irradiated spot) flushed with a low gas flow rate (20 cc/cm)

A current drop of ~ 40% for a 0.55 C/cm² integrated charge (~3 LHCb years) is found on the low gas flow measurement

NO current drop is observed on the high gas flow measurement

How we used the gas instabilities

- The bad gas mixture reached the GEMs after approximately 30'
- Since the two gaps on each GEM detector are connected in series, the bad gas mixture entered one gap before the other
- The current increased first in the gap where the mixture enters the GEM chamber

29

Profiting of gas instabilities

Global aging test: set-up

 \Rightarrow to check the compatibility between the construction materials (detector and gas system) and the gas mixture

```
\Rightarrow large amount of CF<sub>4</sub> (40%) \Rightarrow Global Aging Test
```

A full size ($20x24 \text{ cm}^2$) prototype (C) in low irradiation position ~ 1 MHz/cm², and 2 full size prototypes in high irradiation position, ~ 15 MHz/cm² (chamber A) and ~ 20 MHz/cm² (chamber B)

```
Ar/CO_2/CF_4 (45/15/40) at reference Gain ~ 6x10<sup>3</sup>
```

monitored H_2O (± 1ppm), T (± 0.1°K), and external P (± 0.1mbar)

gas flows: C -> B -> A -> T/H₂O Probe -> Out initially Φ_{gas} = 200 cc/min, then Φ_{gas} = 350 cc/min

gas inlet line \Rightarrow stainless-steel tubes exhaust gas line \Rightarrow polypropylene tubes (not hygroscopic)

GEM detectors operation @ LHCb

Sun 26 May 2017 13:59:3

Current (nA) State

OFF

HV GFM Monitor

Station A15A1 (two GEM detectors called RIGHT & LEFT) has recently analysed after RUN1&RUN2 439 days colliding beams @ $<\Phi>\sim$ 250 kHz/cm² @ G ~ 4*10³

 \rightarrow Q_{int}~300 mC/cm²

18/06/2024

32

MINNOC HY TOP

GEM

C15A1 C15A1

C15A2 F

C15A2

C16A2 F

C16A2

C17A2 F

C17A2

C18A2 F C18A2

C18A1 F

C18A1

13

C15A2 L

C15A2 B

C15A1 8

Trip algorithm settings: Trip settings

Summary & Outlook

The Casaccia high irradiation global test, with Ar/CO2/CF4=45/15/40, was understood :

- the F-etching observed is correlated with low gas flow
- F-etching effects mainly on the third GEM with fluorine deposits near the copper holes bottom edge
 - → Detectors, even after a severe irradiation in bad conditions, exhibit good time and efficiency performance

 \rightarrow Further tests have shown that **no F-etching** occur if **the gas flow is properly set**

With Ar/CO2/CF4=45/15/40, the GEM detectors showed after RUN1 and RUN2 (Q_{int}~300 mC/cm²):

- sulphur residual deposit mainly on the third GEM, probably due to the outgassing of the ARALDITE 2012;
- no effect of F-etching on GEM;
 - ightarrow No major performance loss observed during LHCb operation
 - \rightarrow < 100 nA dark current recorded on GEM#3

The work on the GEMs chambers is not conclusive but has just begun:

- ightarrow Investigation of the **chemistry of the sulphur** in the **detector operation**
- → Look at possible effects of sulphur on other detector components (anode & cathode)
- ightarrow Analyzing other detectors installed @ LHCB is foreseen

We are very grateful to Anité and Stefano (EN-MME-MM CERN Group) for their excellent work