

MPGD-Calo studies

2nd DRD1 Collaboration Meeting

21-06-2024

A. Stamerra^{1,2}, M. Buonsante^{1,2}, M. Borysova³, A. Colaleo^{1,2}, M. T. Camerlingo¹, L. Longo¹, M. Iodice⁵, M. Maggi¹, L. Moleri³, R. Radogna^{1,2}, G. Sekhniaidze⁴, F. M. Simone^{1,2}, A. Pellecchia¹, R. Venditti^{1,2}, P. Verwilligen¹, D. Zavazieva³, A. Zaza^{1,2}

¹INFN Bari ²Università degli studi di Bari ³Weizmann Institute of Science ⁴INFN Napoli ⁵INFN Roma 3

MPGD prototypes

- MPGD :
- 7 μRWELL (Ba1, Ba2, Fr1, Fr2, Weiz, RM3, Na)
- 4 resistive MicroMegas (Ba, Weiz, RM3, Na)
- 1 RPWELL (Weiz)
- detector size: 20x20 cm²
- ~6 mm drift gap
- **Common readout** board: $1x1cm^2$ pad \rightarrow 384 pads First characterizations in terms of effective gain using X-ray performed in lab in Frascati, Roma3, Bari, Napoli, Weizmann

 $\Delta V_{amp}(V)$

750

800

 ΔV_{amp} (V)

850

MPGD prototypes - SPS test beam

SPS test beam with μ beam at O(100 GeV) to validate and compare the technologies measuring:

- Efficiency
- Response uniformity

- 12 pad chambers under test flushed with
 - Ar/CO₂/CF₄ 45/15/40 for μ-RWELL
- $Ar/CO_2/C_4H_{10}$ 93/5/2 for MicroMegas and RPWELL Data taking based on analog FE
- APV25 + SRS backend system for the DAQ
 - Read 6 chambers at a time
- HV efficiency scan, XY position scan

Anna Stamerra

Analysis workflow

- Observed high probability of cross-talk between pads due to routing of readout vias from pads to front-end
 - Patched offline by clustering pads based on *charge sharing fraction* (details in backup)
- Tracking detectors unused in reconstruction (high noise and discharge rate) → Track reconstructed with clusters from 5 out of 6 pad chambers, excluding the one under test

SPS test beam – Results

Charge distribution of clusters matched with track

Pad-multiplicity distribution of clusters matched with track

SPS test beam – Efficiency

- Efficiency = # hits matched with tracks / # tracks
- Measured for each technology as a function of amplification voltages
- Efficiency related to the central region of the detectors

- High MIP detection efficiency detectors always operated at **plateau** already at gains < 10³
- Detectors can be operated with lower gain and still be efficient

SPS test beam – Response uniformity

Uniformity measured using hits matching with tracks

- Good uniformity for MicroMegas (σ/μ ~ 10%)
- Slightly worse uniformity for μ -RWELL (σ/μ ~ 16%) and RPWELL (σ/μ ~ 22%)

Spotted non-uniformity regions in $\mu RWELL \rightarrow to be better investigated$

Detector	Uniformity (%)
MM-RM3	$(12.3 \pm 0.8)\%$
MM-Na	$(11.6 \pm 0.8)\%$
MM-Ba	$(8.0 \pm 0.5)\%$
RPWELL	$(22.6 \pm 4.7)\%$
µrw-Na	(11.3 ± 1.0) %
µrw-Fr2	$(16.2 \pm 1.7)\%$
µrw-Fr1	$(16.3 \pm 1.1)\%$

Anna Stamerra

R&D on small-size calorimeter prototype at PS

MPGD-HCAL prototype – PS test beam

HCAL cell performance ~ 1 λ_1 (8 active layers)

Data taking based on analog FE (APV25 + SRS)

Runs at different π^- energy (4 – 8 GeV)

 Cherenkov discriminators used to veto electrons and muons

Event selection in Monte Carlo and data

Event selection criteria supported by simulation using MC truth

- MIP-like events: •
 - ~1.3 hit in each layer
- Shower events starting from • layer 3:
 - more than 4 hits per layer from layer 3

180

N hits

Entries

Mean

PS Data

After the

selection

Std Dev

2426

87.95

22.88

Data-MC comparison

- Distribution of total number of hits for hadronic shower events for experimental data and Monte Carlo simulation
- Distributions fitted with Gaussian to extract mean and sigma

Good agreement between data and Monte Carlo

Successful **validation** of MPGD-HCal prototype with 8 layers of 20x20 cm²

MPGD-HCAL prototype – Data-MC preliminary comparison

Lessons learnt

Detector design

- **Cross-talk** associated with readout routing → Two possible solutions in next prototype batch:
 - \circ Shielding in R/O PCB
 - Shorten R/O vias at the expense of equalizing signal delays

Operational experience

- Detector under test operated at high gains: MIP efficiency > 90% for all technologies but observed electronic saturation both at SPS and PS
 - Working point to be optimized for better energy resolution
- Tracking system issue
 - Triple-GEM detector not efficient
 - TMMs not very well understood: mix of high noise and discharge rate
 - Ongoing debug applying promising ad-hoc cleaning
- Front-end electronics (APVs) issue:
 - o many dead/noisy channels
 - o few hybrids completely faulty

Plans for upcoming test beam

Next week SPS Test beam

- Test of 8 pad chambers (resistive MicroMegas + µRWELL) with both **muon** and **pion** beam
 - Optimize detector working point with APV (MIP efficiency scan)
 - Consolidate response uniformity results

PS Test beam right after SPS

- Test same setup with pion beam
- Include absorbers and repeat pion energy scan at optimized working point for energy resolution studies

MPGD technologies

Table 3.2: Characteristics of the resistive MPGD prototype tested in this work. The brute value of the resistivity refers to the value of the DLC foil at production; the value after curing is the one measured after the curing procedure of the DLC foil.

Technology	Amplification gap	Drift gap	Resistivity	Resistivity
			(brute value)	(after curing)
resistive Micromegas	≈ 100 µm	$\approx 6 \text{ mm}$	$(100 \pm 30) \text{ M}\Omega/\Box$	$\approx 45 \text{ M}\Omega/\Box$
μ -WELL	≈ 50 µm	$\approx 6 \text{ mm}$	$(200 \pm 60) \text{ M}\Omega/\Box$	$85 \div 110 \text{ M}\Omega/\Box$
RPWELL	$\approx 400 \ \mu m$	$pprox 5 \ mm$	$\approx 2 \ G\Omega \cdot cm$ (bulk)	

uRWELL

Drift cathode PCB

µRWELL seen at the microscope

SPS test beam – Cluster reconstruction

High probability of **cross-talk** effect observed among adjacent pads due to routing of the vias connecting pads to the connectors

Developed ad-hoc **clustering algorithm** based on charge sharing criterium

- Selected pad with highest charge Q_{max}
- Add a second pad if $Q = 50\% Q_{max}$

SPS test beam – Track reconstruction

SPS test beam – Charge

• Charge value is the MPV of the charge distribution of clusters matching the track

MPGD-HCAL prototype - G4 simulation setup

- Small calorimeter geometry implemented
 - 8 layers of alternating of 2 cm stain-less steel absorbers and MPGD
 - First 2 layers with 4 cm absorbers to increase probability of shower development in the first layers
 - 20x20 cm² active surface
 - 1x1 cm² pad granularity
- Pion gun of energy range available at PS (4 8 GeV)
- **Digitization algorithm** implemented to account for charge-sharing among adjacent pads and detector efficiency

Digitization algorithm

Shower containment

MPGD-HCAL prototype – PS test beam

HCAL cell performance ~ 1 λ_1 (8 active layers)

Data taking based on analog FE (APV25 + SRS)

Runs at different π^- energy (4 – 8 GeV)

 Cherenkov discriminators used to veto electrons and muons

MPGD-HCAL prototype – Faulty APVs

Simulation – beam profile per

Figure 4.18: X-Y distributions of hits per each active layer after the digitization algorithm. These distributions are obtained with 30 thousand π^- of 6 GeV. The z-axis is the number of fired pads considering the whole set of events.

Experimental data-beam profile per

Figure 5.6: X-Y distributions of hits per each MPGD layer obtained for the run with pion energy of 6 GeV. The z-axis is the number of fired pads, in logarithmic scale, considering the whole set of events.