Development of a (sub-)Picoamperemeter for high voltage application

Max Knauseder

21st June 2024

Overview |

- Motivation
- Design
- ► Calibration measurements
- ► Summary and outlook

MOTIVATION

- ▶ What are the spAms used for?
 - ▶ Measurement of currents in pico ampere range (e.g. GEMs)
 - ► Quality control of GEM foils
- ▶ What are the requirements for the spAms
 - ► Usable at high voltages up to 6kV
 - Wireless communication to keep floating ground
 - Temperature-independence
 - ► Multiple measurement ranges (1µA-1nA)
 - ▶ Can have internal resistance because GEMs are ideal current sources

FRONTEND CIRCUIT

- ► Amplification circuit
 - ► Transimpedance amplifier
 - ► Multiple resistors R_F for different measurement ranges
 - Overvoltage protection for the OPamp

Transimpedance amplifier

OVERVOLTAGE PROTECTION

- ▶ Use of NPN transistors instead of diodes
- ▶ Transistors have been shown to have lower leakage currents
- ▶ Two $100k\Omega$ resistors to limit current through transistors

Overvoltage protection circuit

MEASUREMENT RANGES OF THE SPAMS

Resistance R _F	Measuring range	Resolution (LSB)
$5\mathrm{G}\Omega$	$\pm 1 \mathrm{nA}$	$\pm 38 \mathrm{fA}$
$500 \mathrm{M}\Omega$	$\pm 10 \mathrm{nA}$	$\pm 380 \mathrm{fA}$
$50 \mathrm{M}\Omega$	$\pm 100 \mathrm{nA}$	$\pm 3.8\mathrm{pA}$
$5\mathrm{M}\Omega$	$\pm 1 \mu A$	$\pm 38 \mathrm{pA}$

Max Knauseder

CALIBRATION MEASUREMENTS

- ► Calibration via Keithley Modell 6517B
 - \blacktriangleright Keithley delivers voltage between $\pm 1\,\mathrm{V}$
 - \blacktriangleright Pick a resistance so voltage drops to $\pm 0.04\,\mathrm{V}$
 - Resistance is chosen so whole range is calibrated

TEMPERATURE CALIBRATION FOR 20°C

TEMPERATURE CALIBRATION FOR 25°C

TEMPERATURE CALIBRATION FOR 30°C

TEMPERATURE CALIBRATION OVERLAYED

20°C Blue, 25°C Green, 30°C Red

TEMPERATURE CALIBRATION SIDE BY SIDE

Residuals of tempemperature calibration

SUMMARY AND OUTLOOK

- ▶ Uncertainty of roughly $\pm 0.6 \,\mathrm{pA}$
- No temperature dependency
- Switch power supply
 - spAms require up to one batterie a day
 - ▶ Radio module requires the most power
- Extend design to allow multiple channels on one board
- Build spAms with different ranges
 - ▶ Preferred range of $\pm 10 \mu A$
 - ▶ Ranges this high cause problems with calibration
- No discharge protection studies have been performed yet

THANK YOU FOR LISTENING

Thank you for listening

BACKUP

Backup

TEMPERATURE CALIBRATION 20°C

TEMPERATURE CALIBRATION 25°C

TEMPERATURE CALIBRATION 30°C

TEMPERATURE CALIBRATION OVERLAYED

20°C Blue, 25°C Green, 30°C Red

TEMPERATURE CALIBRATION SIDE BY SIDE

Residuals of tempemperature calibration

CALIBRATION RESULTS

Mode	Range	Uncertainty
0	$\pm 1 \mu A$	$\pm 0.52\mathrm{nA}$
1	$\pm 100 \mathrm{nA}$	$\pm 0.1\mathrm{nA}$
2	$\pm 10 \mathrm{nA}$	$\pm 5.22\mathrm{pA}$
4	$\pm 1 \mathrm{nA}$	$\pm 0.61\mathrm{pA}$