

R&D Status of Thin Double- and Multi-gap RPCs

Kyong Sei Lee (CENUM, Korea University) Minho Kang, Taejeong Kim, and Youngmin Jo (Hanyang University) Giuseppe Iaselli, Dayron Ramos Lopez, Gabriella Pugliese, (Bari University)

Facilities and human resources for RPC production at KODEL will be preserved after the upgrade of CMS RPCs

- **1. Human resources** for gas gap production, QC tests, and detector assembly
- **2. Facilities of phenolic and glass RPCs**
	- ✓ **Currently, @441 lab in Asan science in Korea University**
	- ✓ Will be transferred to a lab in Korea Basic Science Institute (KBSI) **IBS in Korea University**
	- ✓ **IBS in future(?)**
- **3. Utilizing dedicated facilities of company nearby Seoul for some processes (since 2020)**
	- \triangleright Washing electrode: Damia @Goyang city
	- \triangleright Graphite coating: Damia @Goyang city
	- ➢ Insulator coating (PET): Yurim @Goyang city

So, the human resources and facilities are available for R&Ds and detector productions for future experiments

Gluing RPC electrodes (gas gaps)

Gas Nozzle

Gluing tables and pressure devices

Gap supporting materials (molding)

peripheral strip spacers

circular spacers

Epoxy glue (3M DM460): hardening time ~ 24 h Requiring epoxy out gassing for additional 48 hours before oil varnishing

2024 KPS Spring Meeting at DCC 3

Metric tables and

pouches for gluing

hardening for gaps

multi-layer air

and glue

Air pouches

 $kg m⁻²$).

uniformly press the whole surface

of the gap with a

pressure of 30 hPa (equivalent to 300

Damia Company at Goyang city for washing and graphite coating on HPL electrodes (resistive plates)

- 1. Washing HPL surface with MEP to improve oil attachment (@Damia)
- 2. Graphite coating & inspection and measurement of resistivity (@Damia): 100 kOhm/□ (RPCs) → **450 kOhm/□ (iRPCs)**
- 3. Final visual inspection for HPL panels (@Damia)

Graphite coating

2024 KPS Spring Meeting at DCC

PE_{brush}

胜

1 st R&D items: 0.5 mm double-gap RPCs

Small 50 cm x 50 cm prototype gas gaps has been produced at Korea University

- \geq Gap thickness: 0.50 mm (intrinsic time resolution \sim 150 ps)
- \triangleright Glass thickness: 1.1 mm (resistivity ~ 7 × 10¹¹ Qcm)
- \triangleright Surf resistivity of graphite ~ 200 kΩ/sq
- \triangleright So far, 4 gaps were constructed with ordinary soda-lime glass RPCs
	- \checkmark Korea University: Thin-gap detectors
	- \checkmark Bari University: Electronics and tests at Bari and CERN
- \triangleright High rate capability (~1 kHz cm⁻²) depends on the sensitivity of **front-end electronics**
	- \checkmark Digitization threshold @FEE as low as \sim 10 fC
	- \checkmark Time resolution for FEEs for digitization should be < 50 ps

Polycarbonate spacers can be produced with a molding method Cost < 10 cents/spacer Accuracy \approx 10 μ m

Thickness of a single gap = 3.0 mm

Thickness of gas gap = 3.0 mm. So, gas piping should be done on the top side of the gap.

Gas inlet profile made of 5 mm thick 2 cm x 2 cm area PC

2 mm diameter gas holes on the HV side glass

2024-06-19 2nd DRD1 meeting 7

- ➢ **Spacing of spacers = 7.5 cm x 7.5 cm (56.25 cm²)**
- ➢ **Inactive area due to a 8 mm spacer = 0.50 cm²**
- ➢ **Ratio of inactive area in a single gap = 0.009**

But, applied a 11 mm offset for the positions of the spacer in the top and bottom gaps in one direction to get rid of all physically dead regions in the double-gap chamber due to spacers.

Spacers positioned using a spacer jig

2 nd item of R&D: Multi-gap GRPCs (planning)

Proposed by Korean group

Time resolution ~ 100 ps and rate capability ~ 1 kHz cm-2 are relevant for triggers for future high-energy experiments.

- ➢ Aiming for experiments that high rate capability is not required (like SHiP UBT)
- \triangleright Higher sensitivity of electronics is NOT essential.
- \triangleright Gap thickness 0.33 or 0.5 mm
- ➢ Rate capability **~** *at best 1 kHz cm²*with ordinary soda-lime glass RPCs (~ 7 × 10¹¹ Ωcm)
- ➢ Spatial resolution depends on strip pitches: *depend on the physics performance*
- ➢ *efficiency ~ 99%* is required to be adequate for *charged-particle VETO.*
- ➢ Time resolution for FEEs for digitization should be *much better than 50 ps*

Triple (or bi)-gap RPCs

2nd DRD1 meeting

Basic idea: a detector composed of two layers of for triple or bi gap gas envelopes

- \triangleright For proper gas circulation We use thin spacers instead of fishing rod.
- \rightarrow 0.33 (\approx 60 ps) or 0.5 mm (\approx 100 ps) thick spacers
	- \checkmark Use of spacers instead of fishing rod for relevant gas circulation
	- \checkmark Productivity of all gluing gas-gap envelopes with spacers is high and fast but no way to repair inside
	- \checkmark Strip panels are free from gas volumes
- \triangleright Number of thin gaps in a single gas envelope: 3 or 2
- \triangleright Surf resistivity of graphite: minimum 500 kΩ/sq and maximum 2 MΩ/sq
- \triangleright A spacer-position offset bet. top and bottom gas envelopes to get rid of physical dead regions due to spacers.
- \triangleright Maximum \sim 1 m long strips to allow dispersion of signals < 50 ps.
- \rightarrow 1-m detector width will be maximum to get σ_t = 100 \sim 150 ps and so adequate for these type MRPCs.
- Thickness of a single trip-gap gas envelope $= 7.0$ mm with 0.33 mm spacers

- \triangleright The vertical position of a particle can be determined by the time difference of the pulse (t_u-t_d) measured from two ends of the strips.
- \triangleright Thickness of a single-detector with double-layer gas volume \sim 28 mm
- \triangleright A detector composed of four gas envelopes of triple gaps (two on top and on bottom layer each to minimize the inactive regions in the detector
- \triangleright The maximum size of thin glass (0.7, or 1.1 mm) for inner electrodes is a real bottleneck to make large size MRPCs.
- \rightarrow In case, we should use a Mosaic method for the inner electrodes to make \sim 1 m² sized gas envelopes.

A single detector composed of 4 triple-gap gas envelopes Strips placed between top & bottom gas envelopes

Planning minimal size six-gap RPC prototypes for the R&D

- \geq Size of a triple gas volume = 100 cm x 50 cm
- \triangleright Strip pitch = 2.5 cm
- \triangleright Strip length = 102 cm
- \triangleright Single-gap thickness = 0.33/0.50 mm
- ≥ 16 -strip readout in both directions

16 strips to FEE Triple-gap gas envelope PCB strip panel Triple-gap gas envelope

100 cm

16 strips to FEE