

The micro-RWELL for high-rate Design, Construction, Performance

G. Bencivenni¹

E. De Lucia¹, R. De Oliveira², G. Felici¹, M. Gatta¹, M. Giovannetti¹, G. Morello¹, E. Paoletti¹, G. Papalino¹, M. Pinamonti³, R. Pinamonti³, M. Poli Lener¹, R. Tesauro¹

1 – Laboratori Nazionali di Frascati – INFN, Frascati (IT) 2 – CERN, Meyrin (CH) 3 – ELTOS SpA, Arezzo (IT)

The μ-RWELL

G. Bencivenni et al., The micro-Resistive WELL detector: a compact spark-protected single amplification-stage MPGD, 2015 JINST 10 P02008

The **μ-RWELL** is a **resistive MPGD, with a GEM derived amplification stage,** composed of two elements:

- **Cathode**
- **μ-RWELL PCB:**
- ‒ a **WELL** patterned **kapton foil** (with **Cu-layer on top**) acting as **amplification stage**
- ‒ a **resisitive DLC film** with **ρ50÷100 MΩ/□**
- ‒ a standard **readout PCB** with **pad/strip** segmentation

The **"WELL"** acts as a **multiplication channel** for the ionization produced in the drift gas gap.

The **resistive stage** plays a crucial role ensuring the **spark amplitude quenching,** which is **essential for stable operation.**

Drawback: the capability to **stand high particle fluxes** is **reduced**, but **largely recovered** with appropriate **grounding schemes** of the **resistive layer.**

High-rate layout: principle of operation

To overcome the **intrinsic rate limitations** of the **Single Resistive Layout,** it is necessary to introduce a **high-density grounding network** for the resistive stage (DLC).

Single Resistive Layout (SRL) with edge grounding

Segmenting the DLC with **conductive micro-strips/dots with a** typical **pitch of** 1cm: a sort of tiling of the active area using a set of smaller SRL.

High-rate layouts evolution

G. Bencivenni et al., *The μ-RWELL layouts for high particle rate***, 2019** *JINST* **14 P05014**

5

2018 - 2020

Extensive R&D has been performed to optimize the DLC grounding, enabling the detector to withstand up to 1MHz/cm²

G. Benciv enni, LNF-INFN

• **Easily engineered, because based on SBU technology**

PEP layouts comparison

2022 2023

PEP-Groove: DLC grounding through conductive groove to ground line

Pad R/O = 9×9mm²

Grounding:

- **- Groove pitch = 9mm**
- **- width = 1.1mm**
- **→ 84% geometric acceptance**

PEP-DOT:

DLC grounding through conductive dots connecting the DLC with pad r/outs Pad R/O = 9×9mm² Grounding:

- **- Dot pitch = 9mm**
- **- dot rim = 1.3mm**
- **→ 97% geometric acceptance**

$DOT \rightarrow$ plated blind vias

 $16 = 149.12$

Groove vs DOT (X-ray characterization)

G. Benciv enni, LNF-INFN

7

Groove vs DOT (test beam characterization)

APV25 based Fee

PEP DOT – time performance (preliminary)

FATIC based Fee

9

TB-2023 at H8C with **preliminary version of the FATIC chip** (developed by Bari Group) in the framework of the R&D for the **LHCb-Muon upgrade**. A new **test beam foreseen next Nov. '24** with **an updated version of the ASIC**, aiming to reduce the **FEE thr down 3 – 3.5 fC**

Manufacturing high-rate layouts

The **PEP-DOT layout is a rigid-flex PCB** using an **SBU technology-based PCB**, that is **compatible with standard industrial processes**.

The **ELTOS** is the industrial partner **involved in the manufacturing of the µ-RWELL**.

This presents a significant advantage, in view **of large-scale production for the Muon upgrade at LHCb.**

The **ELTOS SpA** was founded in 1980 in Arezzo, Italy.

The Company has a **large experience in the construction of MPGDs,** including technologies such as **Thick-GEM (THGEM)** and **MicroMegas**.

The **involvement of a private industry** in this R&D **opens the way** for the use of μ-RWELL technology **across various fields of applications.**

Detector Manufacturing flow chart

Detector manufacturing steps

Step 0 – Detector PCB design @ **LNF**

Filos

- **Step 1 – CERN_INFN DLC (C.I.D)** sputtering machine installed @ **CERN**
	- In operation since Nov. 2022
	- Production by **LNF-INFN** technical crew
- **Step 2 –** Producing readout PCB by **ELTOS**
	- pad/strip readout

Step 3 – DLC patterning by **ELTOS**

• photo-resist \rightarrow patterning with BRUSHING-machine

Step 4 – DLC foil gluing on PCB by **ELTOS**

• Large press available, up to 16 PCBs workable simultaneously

Step 5 – Top copper patterning by **CERN**

• Cu amplification holes image and HV connections by Cu etching

- **Step 6 –** Amplification stage patterning by **CERN**
	- PI etching \rightarrow amplification-holes

Step 7 – Electrical cleaning and detector closure @ **CERN**

G. Bencivenni, LNF-INFN

DLC sputtering

The **CID** (CERN-INFN-DLC) sputtering machine, a **joint project between CERN and INFN**, is used for preparing the **base material of the detector**. The potential of the DLC sputtering machine is:

- ⚫ **Flexible substrates** up to **1.7m×0.6m**
- ⚫ **Rigid substrates** up to **0.2m×0.6m**

In **2023,** the activity on CID focused on the **tuning** of the **machine on small foils:** very **good** results in terms of **reproducibility and uniformity.**

In **2024**, the challenge is the **sputtering of large foils.**

C.I.D.

Detector manufacturing at ELTOS (I)

Step 2 (@ ELTOS)

1) PCB production

Step 3 (@ ELTOS)

- 1) Photoresist lamination for DLC protection
- 2) Photoresist UV-exposure

3.4

- 3) Photoresist developing
- **4) DLC patterning** with brushing machine

3.2

DLC Kapton Cu

3.3

Detector manufacturing at ELTOS (II)

Step 4: The final manufacturing operation carried out at ELTOS is the **coupling of the DLC foil and the PCB through a layer of prepreg**.

N. 16 prototypes of micro-RWELL were made **with 4 different prepreg thicknesses(1 special).** The test, beside **validating the whole manufacturing process (ELTOS CERN)**, allowed for **the study of the dependence** of the **induced signal amplitude** as a **function of the readout capacitance** wrt the amplification stage.

Pre-preg

106 50

1080 75

Δx [μm]

Electrical Hot Cleaning

At the end of the manufacturing process at CERN, a **conditioning procedure** is performed:

- Standard **PCB washing**
- **Electrical cleaning in dry air** (**90°C** in an oven) from **300 V to 680 V** (each step with current < 1 nA)
- **Detector closure** and final **test at 600 V in ambient air**

Pilot co-production test

The 16 co-produced prototypes have been tested with X-rays:

- **15/16 are fine**
- **1/16 needs re-cleaning**

Production yield > 93%

Co-production pilot results (I)

- **16** co-produced protos have been delivered and tested
- **10/16 (LNF) + 5/16 (CERN)** are fine
- **1/16 should be re-cleaned**

Characterized with **X-ray gun** \rightarrow Gas gain measurement

Co-production pilot results (II)

- **16** co-produced protos have been delivered and tested
- **10/16 (LNF) + 5/16 (CERN)** are fine
- **1/16 should be re-cleaned**

The **gain** is maximized for **≥ 30 - 40 MOhm/square**

Prepreg thickness optimization

28µm thick prepreg maximize both the **amplitude of the signa**l induced on the pad readout, and **S/N ratio** (measurement done with APV25)

Summary

The **R&D** on **high-rate layouts for the LHCb upgrade** has been completed:

- the **PEP-DOT** layout shows good performance**:** gain of **10⁴ , 98%** efficiency, **> 10 MHz/cm²** , **7ns** time resolution
- **General parameters** of the detector have been set to **maximize stability and gain**:
	- $\rho \ge 50$ MOhm/square, DOCA = $0.5 0.6$ mm (dead-zone ~ 1.3 mm)
	- **prepreg thickness 28µm**

• Amplification stage optimization by reducing the **well pitch:** 140µm, 110µm, 90µm

- **Large size**:
	- **M2R1-LHCb (25x30 cm²** active area): **delivered May '24**, X-ray characterization in June/July, test beam in **Nov. '24**. • **M2R2-LHCb (30x70 cm² active area): design** by the end of **2024, production** beginning in **2025**

The **detector manufacturing process** is nearly finalized:

- Several construction **steps are performed by ELTOS**
- **Detector finalization** (Kapton etching, electrical hot cleaning, etc.) is **carried out at CERN**

• The **DLC sputtering machine**, C.I.D., **will provide the base material**, once the sputtering parameters are optimized

SPARE SLIDES

G. Benciv enni, LNF-INFN 22

Technology spread

In the last years there has been a significant spread of the technology among several research groups working on Nuclear and Sub-Nuclear experiments

- **1. CLAS12 @ JLAB (USA):** the upgrade of the muon spectrometer
- **2. EPIC @EIC (BNL - USA):** endcap tracker disks based on a hybrid GEM+µRWELL technology
- **3. X17** ω n TOF EAR2 (CERN):TPC with a uRWELL based amplification stage, for the detection of the X17 boson
- **4. TACTIC @ YORK Univ. (UK):** radial TPC for detection of nuclear reactions with astrophysical significance
- **5. Muon collider:** R&D for a digital hadron calorimeter
- **6. CMD3 (RU):** GEM+ µRWELL disk for the upgrade of the tracking system
- **7. UKR I (UK):** thermal neutron detection with pressurized ³He-based gas mixtures

u-RWELL at LHCb

Inner region @ Run5 – Run6 **detector requirements**[1]

- Rate up to **1 MHz/cm²** on detector single gap
- Rate up to **700 kHz** per electronic channel
- **Efficiency quadrigap >=99%** within a BX (25 ns)
- Accumulated charge in 10y at M2R1 up to **1C/cm²**

Detector size & quantity (4 gaps/chamber - redundancy)

• **R1÷R2: 576 detectors,** size 30x25 to 74x31 cm² , **90 m²**detectors **– 130 m²**DLC

G. Benciv enni, LNF-INFN 25 25

Spot Effect for SRL – Manufacturer plot

From the model of the resistive stage of a μ-RWELL:

1. detectors with **same size** but **different resistivity** exhibit a **rate capability** scaling as the **inverse of their resistivity.**

2. for the **SRL**, **increasing the active area** from **10x10 cm² to 50x50 cm²** the **rate capability should go down to few kHz/cm²**

3. By using a **DLC ground sectoring every 10 cm**, **large (50x50 cm²) detectors** could achieve **rate capability** up to **100kHz/cm²** (with X-ray)

High-rate µ-RWELL – R&D plans

✓ M2R1 design – delivered May 2024

- M2R1 X-ray characterization (June- July 2024)
- Electronic integration, FATIC3 chip based (Sept. 2024)
- Test beam (NA H8C CERN or T10-PS) M2R1 with FATIC3 (Nov. 2024)
- R&D plans:
	- amplification stage optimization (gain vs well-pitch)
	- optimization coupling DLC foil R/out PCB
	- test of Hybrid layout \rightarrow G-RWELL
	- electrical cleaning optimization (w/Rui)
	- irradiation study a GIF++ (w/CERN Gas Group)

MOLLOR

TOP

Co-production pilot test

- **16** co-produced protos have been delivered and tested
- **10/16 (LNF) + 5/16 (CERN)** are fine
- **1/16 should be re-cleaned**

FATIC2 block diagram

Preamplifier features:

- CSA operation mode
- Input signal polarity: positive & negative
- Recovery time: adjustable

CSA mode:

- Programmable Gain: 10 mV/fC ÷ 50 mV/fC
- Peaking time: 25 ns, 50 ns, 75 ns, 100 ns

Timing branch:

- \checkmark Measures the arrival time of the input signal
- Time jitter: 400 ps @ 1 fC & 15 pF (Fast Timing MPGD)

Charge branch:

- \checkmark Acknowledgment of the input signal
- Charge measurement: dynamic range > 50 fC, programmable charge resolution

Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401-404

Development of μ -RWELL detectors for the upgrade of the tracking system of CMD-3 detector

L. Shekhtman*, G. Fedotovich, A. Kozyrev, V. Kudryavtsev, T. Maltsev, A. Ruban Budker Institute of Nuclear Physics, 630090, Novosibirsk, Russia Novosibirsk State University, 630090, Novosibirsk, Russia

ARTICLE INFO

Tracking detectors Micro-RWELL Micro-pattern gas detectors

Keywords:

ABSTRACT

An upgrade of tracking system of Cryogenic Magnetic Detector (CMD-3) is proposed using microresistive WELL technology. CMD-3 is a general purpose detector operating at the VEPP-2000 collider at Budker Institute of Nuclear Physics and intended for studies of light vector mesons in the energy range between 0.3 GeV and 2 GeV. The new subsystem consists of double-layer cylindrical detector and the end-cap discs. Two prototypes, micro-RWELL and micro-RWELL-GEM were built and tested. Gas amplification of micro-RWELL detector was measured with several gas mixtures and maximum gain between 20000 and 30000 was observed. However, maximum gain is fluctuating from measurement to measurement by a factor of 2 and thus a safety margin of 2-3 is needed to provide reliable operation of the device. In order to increase the signal GEM was added to micro-RWELL, new prototype was tested with the same gas mixtures and gains above $10⁵$ have been demonstrated. Time resolution achieved for both prototypes are 7 ns for micro-RWELL and 4 ns for micro-RWELL-GEM.

L. Shekhtman, Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401–404

Drift Gap: Shekhtman **3mm** – LNF+Roma2 **6mm**

Transfer Gap: Shekhtman **3mm** – LNF+Roma2 **3mm**

Developed for **CMD3 upgrade disks** (4 sectors 50×50cm²)

The GEM **must be** stretched: sizes larger than 50×50cm² could be critical (depending on the gas gaps size).

Check for

μ-RWELL + GEM: gas gain

Fig. 4. Gain as a function of voltage on the top electrode of μ -RWELL for different gas mixtures. Voltage across the drift gap is 500 V.

L. Shekhtman, Nuclear Inst. and Methods in Physics Research, A 936 (2019) 401–404

Fig. 5. Gain as a function of voltage on the top electrode of μ -RWELL for GEM voltages providing additional gain of 50-100 and for different gas mixtures. Voltage across the drift gap is 500 V.

1-D Tracking

With a **0.4 mm strip pitch** and **0.15 mm strip width**, no effects were observed within this resistivity range. Additionally, DLC resistivity uniformity is not a critical parameter for spatial resolution.

In collaboration with G. Cibinetto, R. Farinelli, L. Lavezzi, M. Gramigna, P. Giacomelli, E. De Lucia, D. Domenci, A. D'angelo, M. Bondi, M. Scodeggio, I. Garzia, M. Melindi ³³

Increasing the R/O pitch will result in a **reduction of the spatial resolution**

1-D tracking (inclined tracks)

For inclined tracks and/or in presence of high B fields, **the charge centroid (CC) method gives a very broad spatial resolution** on the anode-strip plane.

Implementing the **μTPC mode[1]** , using the knowledge of the **drift time** of the electrons **each ionization cluster is projected inside the conversion gap**, and **the track segment** in the gas gap is reconstructed.

Combinig the CC and μTPC reconstruction (through a wheighted average) **a resolution well below 100 μm** could be reached over a wide incidence angle range.

M. Giovannetti et al., *On the space resolution fo the μ-RWELL***, 2020 JINST 16 P08036**

[1] introduced for ATLAS MMs by T. Alexopoulos

2-D Tracking layouts

N.2 u-RWELLS 1D (2 \otimes 1D) u-RWELL - Capacitive Sharing r/out u-RWELL TOP r/out

Operation at **lower gas gain** wrt the «COMPASS» R/out (X-Y r/out decoupled) **Tested @ TB2022**

The **charge sharing performed through the capacitive coupling between a stack of layers** of pads and **the r/out board. Reduce the FEE channels**, but the **total**

charge is divided between the X & Y r/out. Tested @ TB2023

The **TOP-readout layout** allows to work at **low gas gain** wrt the «COMPASS» r/out (X-Y r/out decoupled).

X coordinate on the TOP of the amplification stage introduces **dead zone in the active area.**

Tested @ TB2023

Tracking performance

 HY $[_V]$

CS pitch 1.2 mm

- due to the charge spread the working point is shifted to high voltage/gain
- Spatial resolution improves at high gain reaching 150 um with a strip pitch of 1.2 mm

Top-r/out pitch 0.8 mm

• low-voltage/gain operation but low efficiency level due to the geometrical dead zone on the segmented amplification stage

G. Benciv enni, LNF-INFN 36

Tracking: R&D plans

R&D on tracking μ -RWELL for muons systems at future colliders

- Finalization of the analysis of the 2022-2023 beam tests:
	- 2 \otimes 1D layouts
	- 2D \rightarrow 1D \oplus top-readout
	- 2D w/Capacitive Sharing
- R&D plans:
	- amplification stage optimization (gain vs well-pitch)
	- new PCB-RWELL multi-task layout (1D, 2D, Hybrid layouts)
	- hybrid μ -RWELL \rightarrow GEM \oplus RWELL
	- TB-2024 (sinergy with INFN **Roma2**)

Low X⁰ Cylindrical μ-RWELL

eurizon

· residual width up

residual width dv

Exploiting the **flexible characteristic of the amplification stage** of the μ-RWELL, as well as the readout (to which it is coupled through the resistive DLC stage), we developed **a low-mass (0.6% X0) modular Inner Tracker for lowenergy positron-electron colliders**, exploiting the **innovative Cylindrical μ-RWELL (C-RWELL) technology.**

Residual Width $\begin{bmatrix} \mu \text{m} \\ \text{m} \\ \text{m} \\ \text{m} \end{bmatrix}$

200

550 560 570 580

Three roof-tile layout

Roof-tiles assembly

Preliminary CWELL analysis - HV Scan Ed = 2kV/cm Ar CO - CE 45:15:40

C-RWELL test with cosmics Dinner with Huong G. Bencivenni. LNF - INFN

38

Vacuum bag technology

Low Mass μ-RWELL

