

MRPC and RPC production capabilities in USTC

Yongjie Sun

State Key Laboratory of Particle Detection and Electronics Department of Modern Physics University of Science and Technology of China

Outline

- Introduction
- Completed mass production
 - MRPC for STAR TOF
 - MRPC for STAR MTD
 - MRPC for BES-III e-TOF
- Ongoing & foreseeing projects
 - MRPC for CBM TOF (pre-production for STAR e-TOF)
 - RPC for ATLAS Phase-II Upgrade
 - RPC for STCF Muon system
- Summary and outlook

Introduction

Particle and Nuclear Physics and Electronics in the Modern Physics Department at USTC. State Key Laboratory of Particle Detection and Electronics, USTC

- Collider physics
 - ee: BES3, Belle2
 - pp: ATLAS, CMS
 - AA: STAR, ALICE
- Non-accelerator physics
 - Dark matter: DAMPE, PandaX-4T
 - $0\nu 2\beta$: CUPID-Mo/CUPID
 - Axion/Monopole: R&D
- Particle detector
 - Micro-pattern gaseous detector
 - Silicon detector (MAPS, LGAD)
 - Timing/trigger detector (MRPC, RPC)
 - Calorimeter (EMCal, HCal, Bolometer)
- Super Tau-Charm Facility
 - Next generation ee collider in China
 - Leading the R&D

MRPC for STAR TOF

- R&D Started in 2000.
- Prototypes tested in 2001
- MRPC final design in 2002
- First TOFr tray installed (2002-2004)

Mass production for STAR TOF

- Mass production started in April 2006 and finished in Nov. 2007.
- 1283 MRPCs produced and qualified in USTC (30% of total STAR-TOF MRPCs).
- Over 95% of MRPCs tested with good quality.
- Operating in STAR smoothly from 2008 till now.
 - Clean room (100K) with temperature and humidity control
 - Detailed documents of assembly and test for tracking
 - Database for the mass production
 - Cosmic ray test system

2006	Month	Output	2007	Month	Output	Month	Output
	Jun.	12		Jan.	58	Jul.	120
	Jul.	64		Feb.	24	Aug.	120
	Sep.	55		Mar.	83	Sep.	119
	Oct.	35		Apr.	80	Oct.	121
	Nov.	42		May.	126	Nov.	120
	Dec.	22		Jun.	82		
Total	230			1053			

Long strip MRPC for STAR Muon Telescope Detector

- Motivated by the muon trigger requirement of STAR
- High time resolution and good spatial resolution for muon trigger and identification
- Finally Realized by a single layer of LMRPC
 - Suitable for large area coverage
 - Mean time independent of incident position

Mass production of LMRPC for STAR MTD

- Final design in 2009:
 - Size: 58×91.5 cm, strip: 3.8×87 cm
 - Gap: 5×0.25 mm
 - Readout: double-end
- LMRPC mass production: May. 2011 Jan. 2013
- 57 LMRPC produced and qualified in USTC (50% of total)

110

Efficiency (%)

Integral

120 130 140 150

Time resolution (ps)

471

	Timeline of STAR MTD
2005	R&D started
2006	Beam test at Fermi-Lab T963 beam
2007	2 modules with trigger elec. installed
2008	3 modules with TOF elec. installed
2009	Design finalized
2010	1 module of final design installed
2011	Mass production started
2012	10% installed
2013	63% installed
2014	100% installed

2nd DRD1 Collaboration Meeting - WG 6

90 100

70

18 Counts 16

Counts

25

20 15

BES-III@BEPC e-TOF upgrade

- Upgrade BES-III e-TOF from scintillator to MRPC:
 - Better time resolution of <50 ps
 - Smaller cell size to reduce the scattering effect
- Prototypes tested in 2011 and 2013@BEPC E3 line
 - Same gap structure: 2×6×0.22 mm
 - Different readout pattern: single- vs. double-end
- ✓ Double-end shows better time resolution without position correction
- ✓ Double-end time resolution independent of strip length

✓ Single-end time resolution varies between strips

Mass production of BES-III e-TOF MRPC

- Final design in 2014
- Production: 2014-2016
- Totally, 80 MRPC were produced and qualified

MRPC for CBM TOF

- High rate @CBM TOF as a fixed target heavy iron experiment
 Coverage: ~ 120 m²
 ▶Rate: 1-25 kHz/cm²
- Thin float glass MRPC is a cost-effective solution for the TOF wall outer region (rate ~ 1 kHz/cm²)
- R&D started as early as 2009
- The first prototype to check the cross-talk effect with a long-strip structure

2nd DRD1 Collaboration Meeting - WG 6

AuAu 10AGeV. TOF at 6n

AuAu 25AGeV. TOF at 10r

Thin float glass MRPC3/4 for CBM TOF

• Final design

- Glass: 0.23 mm
- Rate capability: 2 kHz/cm²
- Strip: 1 cm pitch, 50 Ω differential impedance
- 80 MRPC3 produced and installed for STAR e-TOF as pre-production

Time resolution as function of incident ch. particle flux

Readout strips	$(0.7 \text{ cm} + 0.3 \text{ cm}) \ge 32$, double-end surp				
Impedance	50 Ω differential signal to PADI				
Active area	320 mm × 270 mm	320 mm × 540 mm			
Detector size	377 ×324 mm	377 × 588 mm			
Total Amount	200	310			

20 June, 2024

MRPC with pad spacers

- Good candidate for CBM TOF MRPC3
- Have a better anti-aging effect under high flux.

TimeResolution

20 June, 2024

Thin-gap RPC for ATLAS Phase-II upgrade

- 3 layers of thin-gap RPC to be installed in ATLAS Barrel Inner region during LS3 with rate capability up to 1 kHz/cm²
 - Recover most of the current geometrical acceptance holes
 - The redundancy of the system will be greatly enhanced
 - Full trigger efficiency can be maintained even if the old RPCs have to be operated at reduced efficiency (mix gas or reduced HV)
- Tasks undertaken by ATLAS Chinese cluster (USTC-SDU-SJTU)
 - ~ 900 BIS/BIL/BOM/BOR read-out panels will be produced and qualified
 - ~70 gas gap will be produced and qualified
 - ~360 singlets assembly carried out in China

Large size honeycomb readout panels

Large size PCB

RPC gas gap production

- A marble table base: 2.5m×1.8m
- A headstock supported by a gantry
- The headstock holds two spacer pickers and a glue syringe.
- The origin, moving range, and steps of the head part are programmable.
- A graphite electrode painting room

Summary

- USTC has a long-term experience in MRPC production.
- Several projects completed successfully.
- All built MRPC systems operated smoothly.
- For each project, we started from the R&D according to the requirements.
- Proposals submitted successfully with abundant R&D efforts.
- Beyond that, our group also continues till physics analysis.

R&D \rightarrow Proposal \rightarrow Mass production \rightarrow Commission \leftarrow Physics analysis \leftarrow Calibration / Software \leftarrow