

JupyterHub at Port d'Informació Científica (PIC)

Francesc Torradeflot

CS3 JupyterHub Community Technical Workshop 2024 2024-05-15

Outline

- Context: What is PIC?
- Jupyterhub at PIC
 - Early days
 - Current status
 - What's next

What is PIC?

- PIC stands for Port d'Informació Científica
- Founded in 2003, collaboration between IFAE and CIEMAT.
 Located near Barcelona in the UAB campus.
- Tier-1 node of the WLCG with the mission to transfer this knowledge and technologies to other activities
- Team of 23 people (50% scientists 50% engineers)
 - Agile teams that embed in scientific groups to
- What we do
 - R&D in methodologies and tools for advanced data analysis
 - Operate services for the preservation, analysis and sharing of data

What is PIC?

- Connectivity
 - 2x100 Gbps to Academic Network
 - 100 PB in+out per year
- Data processing services
 - Disk dCache: 20 PB (+Ceph 3.5 PB raw)
 - o Tape Enstore: 63 PB
 - Computing HTCondor: 12000 cores, 16 GPUs
 - o Computing Hadoop: 720 cores, 2.5 PB disk
- Facilities, ~120 kW IT
 - ~80 kW in 150 m² air-cooled room
 - ~40 kW in 25 m² liquid immersion cooling system
- Kubernetes, VMs, etc

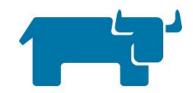
What is PIC?

Traditionally involved in Physics experiments:

- Particle Physics
- Cosmology
- Gamma-ray Astronomy
- Gravitational Waves
- Neutrinos

Recently transferring the knowledge to other fields: bioimaging, materials sciences, health sciences, etc

Early days


JupyterHub service was started as a testbed to:

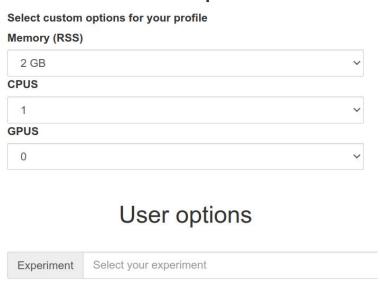
- learn kubernetes
- provide interactive access to GPUs

It worked fine but:

- It wasn't integrated with our main resource manager:
 HTCondor
 - Independent resources -> idle resources
 - No accounting
 - No priorities

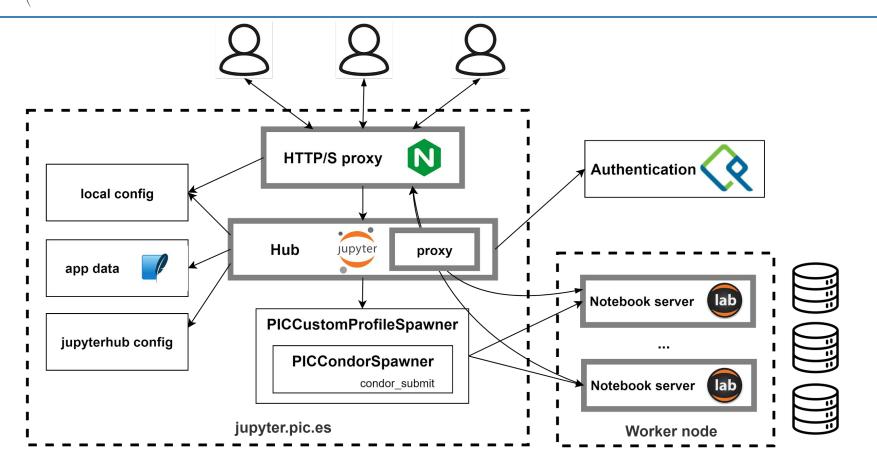
Early days

- Integration with other PIC services wasn't straightforward
 - Access to massive storage with POSIX permissions
 - Importing user HOME
 - Alerts / Monitoring
- Maintenance was hard
 - Custom images and Helm charts apart from the python/conda environment
 - Newbies to k8s
- Looking into the future
 - Dask clusters
 - Connectivity with Hadoop cluster



Current status: Overview

- Launch a jupyter notebook server on PIC's HTC cluster using jupyterhub and batchspawner
- User-defined resources
 - CPUs
 - Memory
 - o GPUs
- Choose experiment for accounting and POSIX permissions
- Managed with puppet & gitlab CI/CD
- High priority jobs to minimize waiting time


Server Options

Start

Current status: Overview

Current status: environment

We provide a python environment with the most common scientific libraries

Python 3.11

Numpy 1.24

Matplotlib 3.7

pandas 2.0

scipy 1.10

And some additions

astropy

scikit-learn

scikit-image

Dask

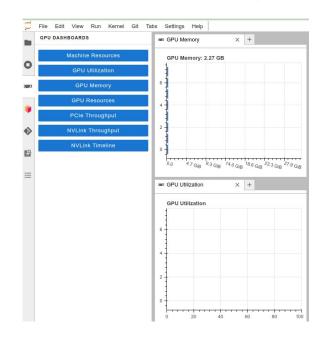
pillow

seaborn

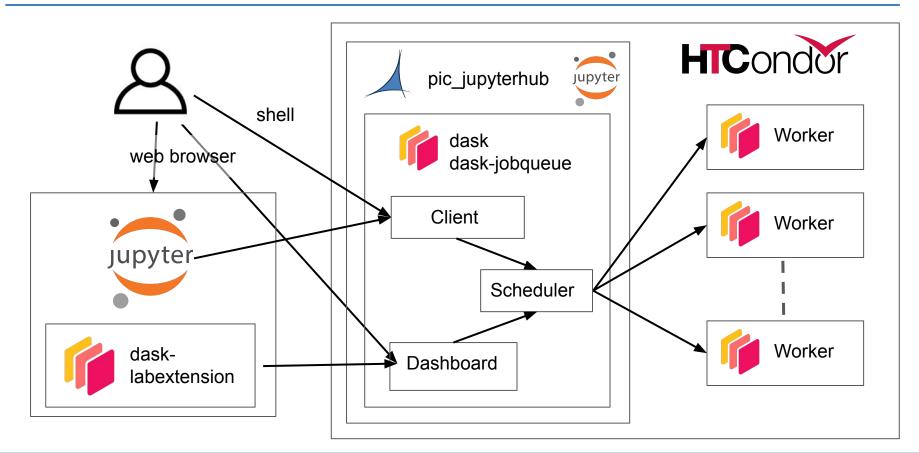
bokeh

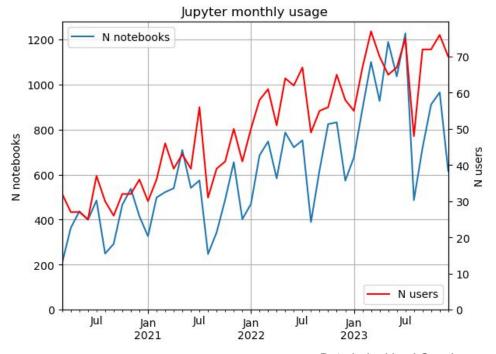
plotly

statsmodels


jupyter stack

Current Status: GPUs


- 16 GPUs available at PIC
 - gpu01: 8 x RTX 2080 Ti, available via jupyter and HTCondor with preemption
 - gpu05: 8 x V100, available via HTCondor with preemption, and a subset of 4 available via jupyter
- GPU dashboards in jupyterlab show the GPU usage
- No GPU libraries in the base environment
- Number of GPUs is going to scale up by the end of 2024


Current Status: Dask

Current Status: usage

- Usage steadily increasing
 - From ~10 to >30 notebooks/day
 - From 25 to 60 active users
- Insignificant resource consumption
 - ~0.01% of total walltime norm
 - Low efficiency ~15%

Data baked by J. Casals

What's next?

The JupyterHub service is very stable.

Well integrated into PIC's main services \rightarrow low maintenance

Flexible for users to use their own software → **few feature requests**

But there's still some roadmap ahead

What's next?

- Environment update
 - jupyterlab 4
 - Rucio-jupyterlab extension
- Integration with PIC's Hadoop Cluster
- Improve Desktop interface
- Provide notebooks to non-typical users
 - 100s of students changing every semester
 - eduGAIN integration
 - This is why we are here
 - Go back to kubernetes (?!)

Thank you!

