
JUPYTERHUB OUTPOST

MAY 15, 2024 | TIM KREUZER

START SERVICES ON MULTIPLE REMOTE RESOURCES

MOTIVATION

• 3.400+ accounts at HPC-systems in Juelich

• Each user is part of various HPC-projects

• Each HPC-project has access to different

partitions on different systems

• Users are experts in their field, but not

everyone is an expert in computer science

• Easy, unified access to all systems

MOTIVATION

?

MOTIVATION

REQUIREMENTS

• One central JupyterHub should be able to start a notebook server on each system

• Add more systems in the future with different resource types (k8s, slurm, torque, etc.)

• Each system has to keep full control over its resources

• Compatible with vanilla JupyterHub – no patches or changes required

ARCHITECTURE
JupyterHub

Browser

Configurable HTTP Proxy

Authenticator

User Database

Spawner

Hub

Notebook

/hub/

/user/ [name]/

/api/auth

K8s Cluster

ARCHITECTURE
JupyterHub

external

system

Browser

Configurable HTTP Proxy

Authenticator

User Database

Spawner

Hub

/hub/

/user/ [name]/

K8s Cluster

Hub Outpost

Database

Notebook

OutpostSpawner

REST API
:8080

:22

K8s svc

/user/ [name]/

Spawner

[p
o

rt
]

ARCHITECTURE
JupyterHub

external

system

Browser

Configurable HTTP Proxy

Authenticator

User Database

Spawner

Hub

/hub/

/user/ [name]/

K8s Cluster

Hub Outpost

Database

Notebook

OutpostSpawner

REST API
:8080

:22

K8s svc

/user/ [name]/

Spawner

[p
o

rt
]

ARCHITECTURE
Start Jupyter-server on two systems

• Simple Setup to allow start on

two different K8s clusters

• Remote cluster can be

managed by different

administrator

• Remote cluster has full control

of their resources via flavors

ARCHITECTURE
External Tunneling

• External tunneling pod

responsible for ssh port-

forwarding

• Create your own solution, or

use an existing one

• Users keep access to their

running servers if JupyterHub is

unavailable

ARCHITECTURE
Delayed Tunneling

• Jupyter server may run on

external system

• Perfect for hpc systems, if the

svc address is not known

during start time

• Start process of jupyter server

has to send a request with its

address to the Outpostspawner

OUTPOST
Key features

• Start jupyter server on remote systems, using classical JupyterHub spawner

• A central JupyterHub may use multiple Outposts, each with its own

administrator and configuration

• Each Outpost may be used by multiple JupyterHubs

• Each JupyterHub uses its own credentials, so they don’t interfere with each other

• Override Spawner configuration for each jupyter server possible

• e.g. user selects docker image which should be used, if allowed by Outpost

• Flavors – Configure how many resources should be used by a hub or user

• Hub-based flavors: Different hubs may use different amount of resources

• User-based flavors: Allow resource usage for each individual user

Hub Outpost

Database

REST API
:8080

:22

Spawner

OUTPOST
Key features

• Start jupyter server on remote systems, using classical JupyterHub spawner

• A central JupyterHub may use multiple Outposts, each with its own

administrator and configuration

• Each Outpost may be used by multiple JupyterHubs

• Each JupyterHub uses its own credentials, so they don’t interfere with each other

• Override Spawner configuration for each jupyter server possible

• e.g. user selects docker image which should be used, if allowed by Outpost

• Flavors – Configure how many resources should be used by a hub or user

• Hub-based flavors: Different hubs may use different amount of resources

• User-based flavors: Allow resource usage for each individual user

Configured at each Outpost

from kubespawner import KubeSpawner

c.JupyterHubOutpost.spawner_class = KubeSpawner

c.KubeSpawner.image = “jupyter/minimal-notebook:notebook-7.0.3”

c.KubeSpawner…. = … # use any Spawner with any configuration you like

flavors = {

“m1”: {

“max”: 5,

“display_name”: “2GB RAM, 1 VCPU, 120 hours”,

“description”: “Service will run for maximum 5 days with 2GB RAM”,

“runtime”: { “days”: 5 }

}

}

c.JupyterHubOutpost.flavors = flavors # may also be a function

c.JupyterHubOutpost.user_flavors = … # create a function to allow \

different flavors for each user

c.JupyterHubOutpost.flavors_undefined_max = 10 # used when no flavor \

is used, limits the number of servers to 10 overall

…

Hub Outpost

Database

REST API
:8080

:22

Spawner

OUTPOSTSPAWNER
Key features

• Remote jupyter server management via POST/GET/DELETE requests

• Send all required information to the Outpost, which will then use a classical spawner to start the

jupyter server.

• Additional API Endpoints

• List all running servers. May be used by Outpost to cleanup servers no longer running

• SpawnEvents – Outpost (or start process of jupyter-server) may send information about current

spawn status

• SetupTunnel – May be used by jupyter-server start process, to create ssh tunnel to running server

• TunnelRestart – Inform hub that tunnels to a certain node must be recreated

• Flavor Update – Outpost may update the flavors for its own system

Authenticator

User Database

Hub

OutpostSpawner

OUTPOSTSPAWNER
Key features

• Remote jupyter server management via POST/GET/DELETE requests

• Send all required information to the Outpost, which will then use a classical spawner to start the

jupyter server.

• Additional API Endpoints

• List all running servers. May be used by Outpost to cleanup servers no longer running

• SpawnEvents – Outpost (or start process of jupyter-server) may send information about current

spawn status

• SetupTunnel – May be used by jupyter-server start process, to create ssh tunnel to running server

• TunnelRestart – Inform hub that tunnels to a certain node must be recreated

• Flavor Update – Outpost may update the flavors for its own system

Authenticator

User Database

Hub

OutpostSpawner

Configured at central JupyterHub (e.g. z2jh)

c.JupyterHub.custom_scopes = { … } # define scopes for API-Endpoints

from outpostspawner import OutpostSpawner

c.JupyterHub.spawner_class = OutpostSpawner

c.OutpostSpawner.options_form = """

Choose a system:

<select name="system">

<option value="Local">Local</option>

<option value="Remote-A">Remote A</option>

<option value="Remote-B">Remote B</option>

</select>

""“

def my_request_url(spawner, user_options): … # define your own logic

def my_request_headers(spawner, user_options): … # for each system

c.OutpostSpawner.request_url = my_request_url

c.OutpostSpawner.request_headers = my_request_headers

… # full example: https://github.com/jupyterhub/team-compass/issues/722

SUMMARY

• The JupyterHub Outpost allows us to reach multiple systems with one central Hub

• Remote systems keep full control over their resources

• Using Kubernetes ingress + https enables a secure connection between Hub and Outposts

• Using c.JupyterHub.internal_ssl feature allows secure connection between Hub and Jupyter server

• Already in use at https://jupyter.jsc.fz-juelich.de and a few more project specific JupyterHubs

https://jupyter.jsc.fz-juelich.de/

• The JupyterHub Outpost allows us to reach multiple systems with one central Hub

• Remote systems keep full control over their resources

• Using Kubernetes ingress + https enables a secure connection between Hub and Outposts

• Using c.JupyterHub.internal_ssl feature allows secure connection between Hub and Jupyter server

• Already in use at https://jupyter.jsc.fz-juelich.de and a few more project specific JupyterHubs

SUMMARY

https://jupyter.jsc.fz-juelich.de/

