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Introduction
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SWAN’s building blocks
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Software

Storage

Infrastructure

UI/Core

Analysis platforms

Compute
§ Service for Web-based Analysis

§ Created in 2016
§ Used by ~300/350 people daily

§ ~1500 people in the last 2 months



Main user communities

﹥ Physics analysis
§ Usually last stages of analysis
§ Interactive, exploratory
§ Collision event data, ntuple-like, columnar
§ More and more with Machine Learning 

﹥ Non-physics analysis (e.g. ATS)
§ LHC studies: extract machine measurements, query 

machine settings
§ Beam dynamics simulation
§ Query and process LHC logs distributedly via Spark
§ Query and plot monitoring data in experiment DAQ 

systems

﹥ Education
§ Many schools/workshops use SWAN for teaching
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SWAN personalisations

﹥ SWAN re-uses as much as 
possible from upstream 
projects

﹥We maintain modules created 
for Jupyter and JupyterHub
§ Thin layers to integrate with 

CERN resources and services

﹥  These modules are released 
as open-source
§ e.g. Spark Monitor and 

Authenticator 
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https://github.com/swan-cern/jupyter-extensions
https://github.com/swan-cern/jupyterhub-extensions 

https://github.com/swan-cern/jupyter-extensions
https://github.com/swan-cern/jupyterhub-extensions


Classic UI (Notebook 6)
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Migration to JupyterLab

﹥ Deployed Jupyterlab v4
§ Extensions migrated to the new version

﹥ Available as beta UI
§ Collection of user feedback underway
§ Users can use the classic UI in parallel

﹥Missing further integration with CERNBox
§ See next slide
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Architecture
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Storage

﹥ All the data our users need for their 
analysis 
§ CERNBox as home directory
§ EOS (storage backend of CERNBox) Fuse 

mounted
§ Also experiments data available

﹥ Sync&Share 
§ Files synced across devices and the Cloud
§ Simple collaborative analysis
§ Users can share directly from SWAN’s UI

﹥ Lab Extension with full CERNBox 
capabilities under development
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sync

share



Consistent view across protocol boundaries
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/eos/user/d/dalvesde/my share

H:\user\d\dalvesde\my share

/eos/user/d/dalvesde/my share/eos/user/d/dalvesde/my share



Software

﹥ Software distributed through CVMFS
§ Distributed RO filesystem
§ Immutable software “stacks” maintained by 

librarians (called LCG Releases)
§ Lazy fetching of software

﹥ Possibility to install additional packages on 
top of an LCG release
§ Stored on EOS/CERNBox

﹥ WIP: custom software environments
§ Python environment independent of any LCG 

release
§ Picked during session startup
§ No plans for Binder integration due to security 

concerns
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custom user env (optional)

thin layer (not user defined)

main software source

LCG Release

CERN
Software

User
Software

Jupyter
modules



Infrastructure

﹥ Fully running in k8s since this year
§ Initially, it ran in bare metal machines and 

later in a mix of bare metal + k8s cluster

﹥ Helm charts based on z2jh
§ Before z2jh it ran on CERN-developed k8s 

yaml’s

﹥ 2 flavour of charts: swan and swan@cern
§ Allows deploying SWAN outside of CERN 

(ScienceBox)
§ Integrate the Python personalisations, EOS 

and CVMF

﹥ JH 4.0.2
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SWAN: EOS and CVMFS support, 
Docker images’ configuration,
Default configurations for 
extensions and Hub

Upstream: z2jh
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SWAN: Default configuration for CERN
GPU support
Fluentd for log collection

https://github.com/swan-cern/swan-charts 

https://github.com/swan-cern/swan-charts


Container images: migration to Alma 9

﹥ Key SWAN container images migrated
§ i.e. user session and JupyterHub images

﹥ User images rewritten from scratch 
§ Like upstream images, but Alma, not Ubuntu
§ Same entry points and configuration options

﹥Modular components’ configuration
§ Independently configured on separate scripts
§ Easy to disable or add new components

﹥More runtime freedom
§ Opens the possibility to use the images in 

other contexts (e.g. CI)
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Upstream:  base-notebook

Upstream:  docker-stacks-foundation

SWAN: minimum config (and branding)

CERN:  Alma 9 (x86 or ARM)

SW
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SWAN: EOS and CVMFS support
 SWAN Extensions 
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SWAN: Spark, HTCondor/Dask, HPC

https://github.com/swan-cern/jupyter-images 
https://github.com/swan-cern/jupyterhub-image  

https://github.com/swan-cern/jupyter-images
https://github.com/swan-cern/jupyterhub-image


External computing resources
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SWAN as entry point to computing resources

﹥ A user SWAN session gets some resources (cores, memory) for running its notebook / terminal 
processes
§ 2 cores and 8 GB are the current defaults

﹥ Additionally, SWAN can be used as an interface to access larger computing resources
§ Users launch computations elsewhere and inspect their results in the notebook
§ UI Extensions are provided to make it easy to connect to the external resources

﹥ Current integrations
§ Batch/HTCondor pools 
§ Spark/Hadoop clusters
§ HPC/Slurm clusters (work in progress, integration with CEPH FS) 
§ GPUs (18 T4s, partitionable A100s for events, in the future access to a shared pool in CERN-IT)
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Spark Connector and Monitor
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Analysis facility pilot

﹥ Support interactive distributed analysis for High Energy 
Physics
§ Address the future analysis needs due to foreseen increase 

in data volumes.  

﹥ Dask as the connector to batch resources
§ The two main HEP analysis frameworks, ROOT and coffea, 

rely on Dask for running analysis distributedly

﹥ For now, it uses overcommitted “static” slots on HTCondor
§ Optimizes usage of batch resources
§ A well-stacked batch farm with a good job mix can get to 

80% CPU utilization
§ Known analysis jobs potential to stack nicely with other 

workloads to drive up utilization
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Web portal

RDataFrame

User session
1. Submit job requests to 
deploy Dask workers

2. Execute 
jobs

3. Run analysis 
computations

.

.

.



What next?
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What next?

﹥ SWAN in the TN (CERN’s restricted Technical Network)
§ Includes work in custom software environments

﹥ Finish Jupyterlab migration

﹥ Deploy HPC integration and Rucio Lab extension

﹥ Simplify operations
§ B/G deployment, GitOps, etc

﹥ Investigate the world beyond notebooks
§ IDE
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Contacts
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Where to find us

﹥ Contacts
§ swan-contact@cern.ch
§ http://cern.ch/swan
§ https://swan-community.web.cern.ch/

﹥ Repository
§ https://github.com/swan-cern/

﹥ Documentation
§ https://swan.docs.cern.ch 

﹥ ScienceBox
§ Install SWAN on-premises
§ https://sciencebox.web.cern.ch
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mailto:swan-contact@cern.ch
http://cern.ch/swan
https://swan-community.web.cern.ch/
https://github.com/swan-cern/
https://swan.docs.cern.ch/
https://sciencebox.web.cern.ch/sciencebox/


Have you heard about REVA?

﹥ https://reva.link 

﹥ CERNBox backend
§ Exposes APIs for the new ownCloud OCIS Web UI and sync/mobile clients

﹥ Can have CEPH as storage backend (WIP)
§ Could add sync&share to your Jupyter CEPH FS mounted storage?
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https://reva.link/


SWAN: a Service for web-based analysis at CERN
Thank you

Diogo Castro
diogo.castro@cern.ch
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Backup slides
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Architecture based on Kubernetes

25SWAN’s Kubernetes setup
Based on Zero-to-JupyterHub

https://z2jh.jupyter.org/en/stable/


A note on collaboration
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Current collaboration model for Jupyterlab

﹥ In the beginning, notebooks could not be open 
in parallel
§ Conflicts would happen, especially on shared 

filesystems

﹥ Now they can, and their data structures are 
synchronized
§ This looks awesome!
§ But optimal usage requires sharing the same 

Jupyter server and kernel (?)

﹥ Jupyterhub proposes “collaboration accounts” 
instead
§ “Real-time collaboration without impersonation"
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The problems of the current collaboration model 

﹥ A shared filesystem might mean access from different Jupyter servers
§ Or even other applications altogether
§ The concurrent editing does not work fully

﹥ Collaboration requires coordination
§ This might not always be easy, especially if we don’t know who is editing on the other side…

﹥ Sharing the same server + kernel is risky
§ Full access to another user’s account, storage, and permissions on many resources
§ Collaboration accounts help, but might be harder to coordinate or integrate with deployment

﹥We’re not aware of use cases that would benefit from true concurrent editing
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We proposed a complementary model better suited for 
large scale distributed environments



Collaboration model of the CS3Mesh project

﹥ Same view as EFSS inside Jupyter
§ Access files, different mounts, shares, 

versions, etc.

﹥ Sharing functionality
§ Share with users or public links
§ Same permissions everywhere

﹥ Parallel access to notebooks
§ As alternative to concurrent editing
§ Opening the same notebook without creating 

conflicts (both locally or remote)
§ Execution environment independence
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Still work in progress

https://github.com/sciencemesh/cs3api4lab

https://github.com/sciencemesh/cs3api4lab

