
On behalf of the SWAN team

https://cern.ch/swan

SWAN: a Service for
web-based analysis at CERN
Diogo Castro

May 15th, 2024
CS3 JupyterHub Community Technical Workshop 2024

Introduction

2

SWAN’s building blocks

3

Software

Storage

Infrastructure

UI/Core

Analysis platforms

Compute
§ Service for Web-based Analysis

§ Created in 2016
§ Used by ~300/350 people daily

§ ~1500 people in the last 2 months

Main user communities

﹥ Physics analysis
§ Usually last stages of analysis
§ Interactive, exploratory
§ Collision event data, ntuple-like, columnar
§ More and more with Machine Learning

﹥ Non-physics analysis (e.g. ATS)
§ LHC studies: extract machine measurements, query

machine settings
§ Beam dynamics simulation
§ Query and process LHC logs distributedly via Spark
§ Query and plot monitoring data in experiment DAQ

systems

﹥ Education
§ Many schools/workshops use SWAN for teaching

4

SWAN personalisations

﹥ SWAN re-uses as much as
possible from upstream
projects

﹥We maintain modules created
for Jupyter and JupyterHub
§ Thin layers to integrate with

CERN resources and services

﹥ These modules are released
as open-source
§ e.g. Spark Monitor and

Authenticator

5

Ke
yc

lo
ak

Au

th
en

tic
at

or

Sp
aw

ne
r

H
an

dl
er

s
(S

w
an

H
ub

)

C
ul

le
r

C
on

te
nt

s
M

an
ag

er

N
ot

ifi
ca

tio
ns

C
he

ck
po

in
ts

&

sh
ar

in
g

oA
ut

h
to

ke
ns

re

ne
w

Th
em

e
&

pe
rs

on
al

is
at

io
n

Sp
ar

k
m

on
ito

r
&

co
nn

ec
to

r

D
as

k
&

H
TC

on
do

r

https://github.com/swan-cern/jupyter-extensions
https://github.com/swan-cern/jupyterhub-extensions

https://github.com/swan-cern/jupyter-extensions
https://github.com/swan-cern/jupyterhub-extensions

Classic UI (Notebook 6)

6

Migration to JupyterLab

﹥ Deployed Jupyterlab v4
§ Extensions migrated to the new version

﹥ Available as beta UI
§ Collection of user feedback underway
§ Users can use the classic UI in parallel

﹥Missing further integration with CERNBox
§ See next slide

7

Architecture

8

Storage

﹥ All the data our users need for their
analysis
§ CERNBox as home directory
§ EOS (storage backend of CERNBox) Fuse

mounted
§ Also experiments data available

﹥ Sync&Share
§ Files synced across devices and the Cloud
§ Simple collaborative analysis
§ Users can share directly from SWAN’s UI

﹥ Lab Extension with full CERNBox
capabilities under development

9

sync

share

Consistent view across protocol boundaries

10

/eos/user/d/dalvesde/my share

H:\user\d\dalvesde\my share

/eos/user/d/dalvesde/my share/eos/user/d/dalvesde/my share

Software

﹥ Software distributed through CVMFS
§ Distributed RO filesystem
§ Immutable software “stacks” maintained by

librarians (called LCG Releases)
§ Lazy fetching of software

﹥ Possibility to install additional packages on
top of an LCG release
§ Stored on EOS/CERNBox

﹥ WIP: custom software environments
§ Python environment independent of any LCG

release
§ Picked during session startup
§ No plans for Binder integration due to security

concerns

11

custom user env (optional)

thin layer (not user defined)

main software source

LCG Release

CERN
Software

User
Software

Jupyter
modules

Infrastructure

﹥ Fully running in k8s since this year
§ Initially, it ran in bare metal machines and

later in a mix of bare metal + k8s cluster

﹥ Helm charts based on z2jh
§ Before z2jh it ran on CERN-developed k8s

yaml’s

﹥ 2 flavour of charts: swan and swan@cern
§ Allows deploying SWAN outside of CERN

(ScienceBox)
§ Integrate the Python personalisations, EOS

and CVMF

﹥ JH 4.0.2

12

SW
A

N

SWAN: EOS and CVMFS support,
Docker images’ configuration,
Default configurations for
extensions and Hub

Upstream: z2jh

SW
A

N
@

C
ER

N

SWAN: Default configuration for CERN
GPU support
Fluentd for log collection

https://github.com/swan-cern/swan-charts

https://github.com/swan-cern/swan-charts

Container images: migration to Alma 9

﹥ Key SWAN container images migrated
§ i.e. user session and JupyterHub images

﹥ User images rewritten from scratch
§ Like upstream images, but Alma, not Ubuntu
§ Same entry points and configuration options

﹥Modular components’ configuration
§ Independently configured on separate scripts
§ Easy to disable or add new components

﹥More runtime freedom
§ Opens the possibility to use the images in

other contexts (e.g. CI)

13

B
as

e

Upstream: base-notebook

Upstream: docker-stacks-foundation

SWAN: minimum config (and branding)

CERN: Alma 9 (x86 or ARM)

SW
A

N

SWAN: EOS and CVMFS support
 SWAN Extensions

SW
A

N
@

C
ER

N

SWAN: Spark, HTCondor/Dask, HPC

https://github.com/swan-cern/jupyter-images
https://github.com/swan-cern/jupyterhub-image

https://github.com/swan-cern/jupyter-images
https://github.com/swan-cern/jupyterhub-image

External computing resources

14

SWAN as entry point to computing resources

﹥ A user SWAN session gets some resources (cores, memory) for running its notebook / terminal
processes
§ 2 cores and 8 GB are the current defaults

﹥ Additionally, SWAN can be used as an interface to access larger computing resources
§ Users launch computations elsewhere and inspect their results in the notebook
§ UI Extensions are provided to make it easy to connect to the external resources

﹥ Current integrations
§ Batch/HTCondor pools
§ Spark/Hadoop clusters
§ HPC/Slurm clusters (work in progress, integration with CEPH FS)
§ GPUs (18 T4s, partitionable A100s for events, in the future access to a shared pool in CERN-IT)

15

Spark Connector and Monitor

16

Analysis facility pilot

﹥ Support interactive distributed analysis for High Energy
Physics
§ Address the future analysis needs due to foreseen increase

in data volumes.

﹥ Dask as the connector to batch resources
§ The two main HEP analysis frameworks, ROOT and coffea,

rely on Dask for running analysis distributedly

﹥ For now, it uses overcommitted “static” slots on HTCondor
§ Optimizes usage of batch resources
§ A well-stacked batch farm with a good job mix can get to

80% CPU utilization
§ Known analysis jobs potential to stack nicely with other

workloads to drive up utilization

17

Web portal

RDataFrame

User session
1. Submit job requests to
deploy Dask workers

2. Execute
jobs

3. Run analysis
computations

.

.

.

What next?

18

What next?

﹥ SWAN in the TN (CERN’s restricted Technical Network)
§ Includes work in custom software environments

﹥ Finish Jupyterlab migration

﹥ Deploy HPC integration and Rucio Lab extension

﹥ Simplify operations
§ B/G deployment, GitOps, etc

﹥ Investigate the world beyond notebooks
§ IDE

19

Contacts

20

Where to find us

﹥ Contacts
§ swan-contact@cern.ch
§ http://cern.ch/swan
§ https://swan-community.web.cern.ch/

﹥ Repository
§ https://github.com/swan-cern/

﹥ Documentation
§ https://swan.docs.cern.ch

﹥ ScienceBox
§ Install SWAN on-premises
§ https://sciencebox.web.cern.ch

21

mailto:swan-contact@cern.ch
http://cern.ch/swan
https://swan-community.web.cern.ch/
https://github.com/swan-cern/
https://swan.docs.cern.ch/
https://sciencebox.web.cern.ch/sciencebox/

Have you heard about REVA?

﹥ https://reva.link

﹥ CERNBox backend
§ Exposes APIs for the new ownCloud OCIS Web UI and sync/mobile clients

﹥ Can have CEPH as storage backend (WIP)
§ Could add sync&share to your Jupyter CEPH FS mounted storage?

22

https://reva.link/

SWAN: a Service for web-based analysis at CERN
Thank you

Diogo Castro
diogo.castro@cern.ch

23

Backup slides

24

Architecture based on Kubernetes

25SWAN’s Kubernetes setup
Based on Zero-to-JupyterHub

https://z2jh.jupyter.org/en/stable/

A note on collaboration

26

Current collaboration model for Jupyterlab

﹥ In the beginning, notebooks could not be open
in parallel
§ Conflicts would happen, especially on shared

filesystems

﹥ Now they can, and their data structures are
synchronized
§ This looks awesome!
§ But optimal usage requires sharing the same

Jupyter server and kernel (?)

﹥ Jupyterhub proposes “collaboration accounts”
instead
§ “Real-time collaboration without impersonation"

27

The problems of the current collaboration model

﹥ A shared filesystem might mean access from different Jupyter servers
§ Or even other applications altogether
§ The concurrent editing does not work fully

﹥ Collaboration requires coordination
§ This might not always be easy, especially if we don’t know who is editing on the other side…

﹥ Sharing the same server + kernel is risky
§ Full access to another user’s account, storage, and permissions on many resources
§ Collaboration accounts help, but might be harder to coordinate or integrate with deployment

﹥We’re not aware of use cases that would benefit from true concurrent editing

28

We proposed a complementary model better suited for
large scale distributed environments

Collaboration model of the CS3Mesh project

﹥ Same view as EFSS inside Jupyter
§ Access files, different mounts, shares,

versions, etc.

﹥ Sharing functionality
§ Share with users or public links
§ Same permissions everywhere

﹥ Parallel access to notebooks
§ As alternative to concurrent editing
§ Opening the same notebook without creating

conflicts (both locally or remote)
§ Execution environment independence

29

Still work in progress

https://github.com/sciencemesh/cs3api4lab

https://github.com/sciencemesh/cs3api4lab

