
Lecture 1 

 
Some Selected Topics of Electromagnetism 

 

T1  New formulation for the electric field  
 

The most general distribution of charge is the volume distribution; i.e., any 
distribution of charge, whatever its size, can be considered to be distributed over 
some volume, even if this volume is microscopically small. So, if we have a charge 
distributed over a volume V  such that the volume charge density is represented 
by the smooth function ρ(r), then the charge of the element of volume dV′  
located at the end of the position vector ′r  is ρ( )dV′ ′r ;  this charge acts by a force 
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on the charge dq  illustrated in the following figure. The force d F2  is written so to 
emphasize that it depends on the product of two infinitesimals, dV′ , and dq. 
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Thus the force acting on the charge dq by the charged body V     is 
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Electrostatic field and electrostatic potential 
 

 From Eq. (1) it is clear that  
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Notice that the right side does not depend on the value of the charge dq, and 
does not change value even if dq  is removed from its place, but it is rather a 
vector characterizing the charged volume V  . For this reason we call the vector  
d dq( )/F r  the electrostatic field vector E, or simply the electric field of the 
charged volume at  r, with 
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T2 New derivation for the Electrostatic  

             energy 

  
When the mechanical behavior of an electrical system is to be studied, it 

may prove advantageous to use energy methods. In general, the energy of a 
system of charges, just like that of any other mechanical system, may be divided 
into its potential and kinetic contributions. Under static conditions, however, the 
entire energy of the charge system exists as potential energy, and we are 
particularly concerned with that potential energy arising from electrical 
interaction of the charges, the so-called electrostatic energy. 
 

 
Electrostatic energy of a charge distribution 

 
Charges located at an infinite distance from one another experience no 

force of interaction. To assemble charges into a charge density, or densities, we 
must do work against the Coulomb force between the charges. Any density of 
charge in a region of space then results in energy stored in that region. We now 
seek a mathematical expression for this stored energy. 

The work done in bringing a point charge 2d q  from a faraway position to 
a point r  in the potential field of a finite distribution of charge is 
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where we considered U( )∞  to be zero.  

If we bring up a continuous distribution of charge of density dρ( )r  to the 
point r  , where the potential is U ,( )r we have 
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By Gauss’s law, we have  
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with εD E=  the displacement vector. Eq. (2), then, takes the form 
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eq. (3) can be rewritten as 
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dW U d d dV( )[ ]D E D= +∫ . . .  

The first integral can be transformed to a surface integral by the divergence 
theorem: 
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 The surface integral vanishes according to the assumption U( )∞  leaving 
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Assuming the linearity of the used media, the vector identity 
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will simplify the integral (4) to the form 
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T3  New formulation for the Electric  

                 current  
 
 
Up to this point, we have been dealing with charges at rest; now we wish 

to consider charges in motion. This occurs in metals, alloys, semiconductors, 
electrolytes, ionized gases, imperfect dielectrics, and even vacuums in the vicinity 
of a thermionic emitting cathode. In many conductors, the charge carriers are 
electrons, and in other cases, the charge may be carried by positive or negative 
ions.  

Moving charge constitutes a current, and the process whereby charge is 
transported is called conduction. To be precise, the current dI   through an 
infinitesimal area  da  taken in the region through which the charges move is 
defined as the rate of transport of the charge across  da. Thus, 
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where  2d q  is the charge crossing da in time dt. 
 By convention, the direction in which a positive carrier moves is taken as 
the direction, or sense, of the current. In general, an electric current arises in 
response to an electric field. If an electric field is imposed on a region, it will cause 
positive charge carriers to move in the general direction of the field and negative 
carriers in a direction opposite to the field. Hence, all currents produced in the 
process have the same direction as the field. 

 
Current density 
 

Consider a conducting medium that has only one type of charge carrier, 
of charge q. The number of these carriers per unit volume will be denoted by N. 
In accordance with the preceding section, we ignore their random thermal 
motion and assign the same drift velocity v to each carrier. We are now in a 
position to calculate the current through an element of area da such as is shown 
in the figure. During the time dt, each carrier moves a distance v dt. From the 
figure it is evident that the charge  2d q   that crosses da during time dt is q times 



the number of all charge carriers in the volume v . n  dt da, where  n   is a unit 
vector normal to the area da. Then the current through da is 

 
                                                           vdt                           
                                                                                                                                 
                                                                                           v                                                                               

                                                                                                                              
                                                   da                 n 
 
 
 
                                                
                                            ( dt)v . n  

 
 

2ρ d V ρ da dt .      ρ d ,
dt dt

d ( )( )= = =v n v . aI                                 (5) 
 

as the volume charge density ρ  of the charge carriers is sometimes written as  
Nq, with N is the carrier concentration and q is the carrier charge. If there is more 
than one kind of charge carrier present, there will be a contribution of the form 
(5) from each type of carrier. In general, the current through the area   
d daa n=   is 
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where the summation is over the different carrier types. The quantity in brackets is 
a vector that has dimensions of current per unit area. This quantity is called the 
current density and is given the symbol J:  
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The current density may be defined at each point in a conducting medium and 
is, therefore, a vector point function. It is a useful quantity, one that enters directly 
into the fundamental differential equations of electromagnetic theory. Equation 
(6) may be written as 
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and the current through the surface  S   , an arbitrarily shaped surface 
area of macroscopic size, is given by the integral  
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T4  Boundary conditions  
 

Transforming Poisson's equation into an integral equation 
  

To handle the boundary conditions it is necessary to use the well-known 
Green's theorem  
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where g and h are any two scalar fields defined in the volume V        bounded by 
the closed surface S . The Poisson differential equation for the potential can be 
converted into an integral equation if we choose a particular g U( ),= ′r
h 1/ l l,′−r r=  where r  is the observation point and ′r  is the integration variable. 
Using the known relation 
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where  n  is the normal line to the element da′  of the surface  S  . If  r  lies inside 
the volume  V     then 
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Also, if  r  lies outside the volume  V     then the left hand side of Eq. (14) vanishes. 
Moreover, if the surface S   goes to infinity and the normal component of the 
electric field U( )/ n′ ′− rд д  on  S     falls off faster than

 
1/ l l′−r r , then the surface 

integral vanishes and (8) reduces to the familiar result (5). 



We are seeking boundary conditions appropriate for the Poisson (or 
Laplace) equation to ensure that a unique and well-behaved (i.e., physically 
reasonable) solution will exist inside any bounded region V   . Physical experience 
leads us to believe that specification of the potential on a closed surface S     
defines a unique potential problem. This is called a Dirichlet problem, or Dirichlet 
boundary condition. Similarly it is plausible that specification of the electric field 
everywhere on the surface (corresponding to a given surface-charge density) 
also defines a unique problem. Specification of the normal derivative is known as 
the Neumann boundary condition.  
 

 

Formal solution of electrostatic boundary conditions using Green's 
functions 

 
As a remark, for a charge-free volume, where Laplace’s equation applies, 

the potential inside a specific volume is expressed in terms of the potential and its 
normal derivative only on the surface of the volume. This rather surprising result is 
not a solution to a boundary-value problem, but only an integral statement, since 
the arbitrary specification of both the potential and its derivative on the surface 
is overspecification of the problem.  

If we had made a better choice of the function h in Eq. (13), we could have 
come up with a better result. Let’s try again by choosing for h a function we will 
call Green’s function: 
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with F satisfying the Laplace equation inside the volume V   : 
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2 G ( , ) 4πδ( )′ ′ ′− −r r r r= , then Green’s theorem (7) will take the form  

0

1 1 U( )U( ) G( , )ρ( )dV [G( , ) U( ) G( , )]da ;
4πε 4π n n

′
′ ′ ′ ′ ′ ′ ′−

′ ′
rr r r r r r r r r= ∫ ∮

V S

+  

 
         (9) 

the fields G( , )′r r  are called Green’s functions. 



The freedom available in the definition of G means that we can make the 
surface integral in Eq. (9) depend only on the chosen type of boundary 
conditions. Thus, for Dirichlet boundary conditions we demand 
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then the first term in the surface integral in (15) vanishes and the solution is 
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For Neumann boundary conditions we will not require that NG ( , ) 0,
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Consequently the simplest allowable boundary condition on GN is 
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where  A  is the total area of the boundary surface. Then the solution is 
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where < U >S  is the average value of the potential over the whole surface  S  . 
 
 
 
 
 
 
 
 
 
 
 
 



T5  Earnshaw’s theorem  

 
Consider an imaginary spherical surface S    of radius r   that contains no 

net charge inside.  The average potential over  S    is  

   = 2
1< U >     U(r , θ, φ)da ,

4 π rS
S

∮                     

where da  is an element of area of S  . This average can be rewritten as 
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where dΩ  is the solid angle the area subtends at the sphere’s center. 
Differentiating the last form with respect to r we get 
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where rE (r , θ, φ) is the normal component of the electric field at the surface S   
at the element da. On rewriting dΩ  as 2da / r   we can write 
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As  S   contains no net charge inside, and even if there are net charge outside 
S  ,  Gauss’s law shows that  (d / dt) < U >    0S = , and consequently the average 

potential  < U >S  allover the spherical surface  S     is constant and does not depend 

on the radius  r of S   . If we let  r  get smaller and smaller then < U >S  eventually 

coincides with U (0); i.e., < U > U (0)S = . 
Now imagine for a moment that there is a potential maximum at some 

point P in a region where ρ 0= . Then the average potential over some sphere 
centered on P must be lower than the potential at P, which is contrary to the 
above result. Thus there can never be a potential maximum in a charge-free 
region. For the same reason, there can never be a potential minimum either; this 



is Earnshaw's theorem. Another equivalent statement of Earnshaw's theorem 
states that  

“A charged particle cannot be held in a stable equilibrium  
by electrostatic forces alone.” 
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