
STRING MANIPULATION,
GUESS-and-CHECK,
APPROXIMATIONS,

BISECTION

6.0001 LECTURE 3 1

Yasser M. Abdou
Physics Department, Faculty of Science,

Tanta University

TODAY
 string manipulation

 guess and check algorithms

 approximate solutions

 bisection method

6.0001 LECTURE 3 3

STRINGS
 think of as a sequence of case sensitive characters

 can compare strings with ==, >, < etc.

 len() is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s) evaluates to 3

6.0001 LECTURE 3 4

STRINGS
 square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

s[0] evaluates to "a"
s[1] evaluates to "b"
s[2] evaluates to "c"
s[3] trying to index out of bounds, error
s[-1] evaluates to "c"
s[-2] evaluates to "b"
s[-3] evaluates to "a"

6.0001 LECTURE 3 5

index: 0 1 2 indexing always starts at 0

index: -3 -2 -1 last element always at index -1

STRINGS
 can slice strings using [start:stop:step]

 if give two numbers, [start:stop], step=1 by default

 you can also omit numbers and leave just colons

6.0001 LECTURE 3 6

s = "abcdefgh"

s[3:6] evaluates to "def", same as s[3:6:1]

s[3:6:2] evaluates to "df"

s[::] evaluates to "abcdefgh", same as s[0:len(s):1]

s[::-1] evaluates to "hgfedbca", same as s[-1:-(len(s)+1):-1]

s[4:1:-2] evaluates to "ec"

STRINGS
 strings are “immutable” – cannot be modified

s = "hello"

s[0] = 'y' gives an error

s = 'y'+s[1:len(s)] is allowed,
s bound to new object

6.0001 LECTURE 3 7

s

"hello"

"yello"

for LOOPS RECAP
 for loops have a loop variable that iterates over a set of
values

for var in range(4): var iterates over values 0,1,2,3

<expressions> expressions inside loop executed
with each value for var

for var in range(4,6): var iterates over values 4,5
<expressions>

 range is a way to iterate over numbers, but a for loop
variable can iterate over any set of values, not just numbers!

6.0001 LECTURE 3 8

STRINGS AND LOOPS
 these two code snippets do the same thing

 bottom one is more “pythonic”

s = "abcdefgh"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u")

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u")

6.0001 LECTURE 3 9

CODE EXAMPLE:
ROBOT CHEERLEADERS
an_letters = "aefhilmnorsxAEFHILMNORSX"

word = input("I will cheer for you! Enter a word: ")

times = int(input("Enthusiasm level (1-10): "))

i = 0

while i < len(word):

char = word[i]

if char in an_letters:

print("Give me an " + char + "! " + char)

else:

print("Give me a " + char + "! " + char)

i += 1

print("What does that spell?")

for i in range(times):

print(word, "!!!")

6.0001 LECTURE 3 10

for char in word:

EXERCISE
s1 = "mit u rock"

s2 = "i rule mit"

if len(s1) == len(s2):

for char1 in s1:

for char2 in s2:

if char1 == char2:

print("common letter")

break

6.0001 LECTURE 3 11

GUESS-AND-CHECK
 the process below also called exhaustive enumeration

 given a problem…

 you are able to guess a value for solution

 you are able to check if the solution is correct

 keep guessing until find solution or guessed all values

6.0001 LECTURE 3 12

GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(cube+1):

if guess**3 == cube:

print("Cube root of", cube, "is", guess)

6.0001 LECTURE 3 13

GUESS-AND-CHECK
– cube root
cube = 8

for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):

break

if guess**3 != abs(cube):

print(cube, 'is not a perfect cube')

else:

if cube < 0:

guess = -guess

print('Cube root of '+str(cube)+' is '+str(guess))

6.0001 LECTURE 3 14

APPROXIMATE SOLUTIONS
 good enough solution

 start with a guess and increment by some small value

 keep guessing if |guess3-cube| >= epsilon
for some small epsilon

 decreasing increment size slower program

 increasing epsilon less accurate answer

6.0001 LECTURE 3 15

APPROXIMATE SOLUTION
– cube root
cube = 27

epsilon = 0.01

guess = 0.0

increment = 0.0001

num_guesses = 0

while abs(guess**3 - cube) >= epsilon:

guess += increment

num_guesses += 1

print('num_guesses =', num_guesses)

if abs(guess**3 - cube) >= epsilon:

print('Failed on cube root of', cube)

else:

print(guess, 'is close to the cube root of', cube)

and guess <= cube :

6.0001 LECTURE 3 16

BISECTION SEARCH
 half interval each iteration

 new guess is halfway in between

 to illustrate, let’s play a game!

6.0001 LECTURE 3 17

GUESS

GUESS

GUESS

BISECTION SEARCH
– cube root
cube = 27

epsilon = 0.01

num_guesses = 0

low = 0

high = cube

guess = (high + low)/2.0

while abs(guess**3 - cube) >= epsilon:

if guess**3 < cube :

low = guess

else:

high = guess

guess = (high + low)/2.0

num_guesses += 1

print 'num_guesses =', num_guesses

print guess, 'is close to the cube root of', cube

6.0001 LECTURE 3 18

BISECTION SEARCH
CONVERGENCE
 search space

◦ first guess: N/2
◦ second guess: N/4
◦ kth guess: N/2k

 guess converges on the order of log2N steps

 bisection search works when value of function varies
monotonically with input

 code as shown only works for positive cubes > 1 – why?

 challenges modify to work with negative cubes!
modify to work with x < 1!

6.0001 LECTURE 3 19

x < 1
 if x < 1, search space is 0 to x but cube root is greater
than x and less than 1

modify the code to choose the search space
depending on value of x

6.0001 LECTURE 3 20

Thank You

https://ocw.mit.edu/
https://ocw.mit.edu/terms

