
Lecture 2 
Conformal Mapping 

 

A complex number z can be written in terms of two real numbers x and 
y according to, 
 

z = x + iy, 
 
where 

i 1=  . 

A single-valued function w of the complex variable z maps z into another 
complex number w, which can be described in terms of two real numbers 
u and v, 

w z u iv( ) .= + 

Any point (x, y) in the Z plane yields some point (u, v) in the W plane. As this point 
moves along some curve x g y( )=  in the Z plane, the corresponding point in the 
W plane traces out a curve u h v( )= . If it should move throughout a region in the 
Z plane, the corresponding point would move throughout some region in the W 
plane. Thus, in general, a point in the Z plane transforms to a point in the W plane, 
a curve transforms to a curve, and a region to a region, and the function that 
accomplishes this is frequently spoken of as a particular transformation between 
the Z and W planes. 

A function w(z) for which the derivative dw/dz at a point is independent of 
the direction of the change dz from the point is called an analytic function. The 
derivative may be written in terms of magnitude and phase: 

iφdw R
dz

e=
 

or 
iφdw R dz .e=  

By the rule for the product of complex quantities, the magnitude of dw is R times 
the magnitude of dz, and the angle of dw is φ  plus the angle of dz. So the entire 
infinitesimal region in the vicinity of the point w is similar to the infinitesimal region 



in the vicinity of the point z. It is magnified by a scale factor R and rotated by an 
angle φ.  It is then evident that, if two curves intersect at a given angle in the Z 
plane, their transformed curves in the W plane intersect at the same angle, since 
both are rotated through the angle φ.  A transformation with these properties is 
called a conformal transformation. 

 

Conjugate Functions 

If the function w is analytic, some important relations of the functions 
u and v follow. We define w dw / dz.′=  Then we can write, 

w z u vw w i
x x x x

,∂ ∂ ∂ ∂′ ′
∂ ∂ ∂ ∂

= = = +                                      (1) 

w z u vw iw i
y y y y

.∂ ∂ ∂ ∂′ ′
∂ ∂ ∂ ∂

= = = +                                     (2)  

Eliminating w′  from Eqs. (1) and (2), and equating their real and imaginary 
parts of the result, we get the so-called Cauchy-Riemann equations, 

u v
x y

,∂ ∂
∂ ∂

=        and        
u v
y x

.∂ ∂
∂ ∂

=  

The functions u and v are related to each other through these equations and 
are called conjugate functions. An important result follows: 

u v u v u u u uu v 0,
x x y y x y y x
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 . = + = + =                    (3) 

as u and v are differentiable.  Also 
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i.e., 
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Likewise, 
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0In particular, the lines u = constant and the lines v = constant in the W 
plane intersect at right angles, so their transformed curves in the Z plane must also 
be orthogonal (See the figure). We already know that this should be so, since the 
constant u lines have been shown to represent flux lines when the constant v lines  
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A mapping of coordinate lines of the W plane in the Z plane 

 

are equipotentials, and vice versa. From this point of view, the conformal 
transformation may be thought of as one that takes a uniform field in the W plane 
(represented by the equispaced constant u and constant v lines) and transforms 
it so that it fits given boundary conditions in the Z plane, always keeping the 
required properties of an electrostatic field.  

There are few circumstances in which knowledge of the required boundary 
conditions will lead directly to the transformation that gives the solution. Some 
examples of the simpler transformations will be given to illustrate the method. 

1- Consider  

w z z( ) .=  

        Here we have 

u x=    and    v y.=  

If we take the potential to be v, then equipotentials are surfaces of constant y, 
and the field lines have constant u = x. That is, the elementary problem of a 
uniform electric field in the x-direction is solved. 



    2- Consider 

2w z z( ) .=  

       Here 

2 2u x y ,=       and      v 2xy,=  

To see what problem is solved by the potentials u and v, we look at the 
surfaces of constant u and v: 

2 2x y a , =      and      2xy b.=  

 with a and b are constants. In this way, we have the curves 
2y xu a: ,=     and     y b 2xv : / .=  
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A configuration based on these functions is called a quadrupole, which has 
conductors placed at four equipotential surfaces. The electric field is given 
by, 

v 2y 2x( , ),≡E =    



whose magnitude 2 2E 2 x y= +  is proportional to the radial distance from 
the z-axis. Devices which exert forces that are proportional to the distance 
from an axis can be thought of as lenses, and so an electric quadrupole is 
a somewhat peculiar kind of lens. 

    3- Consider 

w z .=  

            Here  
2 2u v x, =      and    2uv y .=  

Eliminating v from these two equations we get 

4 2 24u 4xu y 0.  =  

This equation solves to 

2 2
2 x x yu

2
,+

=
  

and hence 

2 2x y xu
2

,+ +
=     and    

2 2x y xv
2

.+
=

  

To relate the function w to electric potentials, we again consider surfaces of 
constant u and v: 

2 2x y x a
2

,+ +
=     and    

2 2x y x b
2

,+
=

  

with a and b are constants. In this way, we have the curves 
2y 2a xu a: ,=       and    2y 2b xv b: ,= +  

provided a and b are positive. 
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If we consider the equipotentials to be surfaces of constant v, then the electric 
field, shown in blue lines, is given by 

2 2

2 2 2 2

2 yv x y x
4 x y x y x

, .≡E = +
+ +

 


    

The electric field is very strong near the origin, i.e., near the sharp edge of the 
conducting sheet. 
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