
16.0001 LECTURE 1

Python Basics

Yasser M. Abdou
Physics Department, Faculty of Science,

Tanta University

Content
 what is computation

 python basics

 mathematical operations

 python variables and types

 2

FAST PACED COURSE
 Position yourself to succeed!

◦ read psets when they come out and come back to them later

◦ use late days in emergency situations

 New to programming? PRACTICE. PRACTICE? PRACTICE!
◦ can’t passively absorb programming as a skill

◦ download code before lecture and follow along

◦ do MITx finger exercises

◦ don’t be afraid to try out Python commands!

66.0001 LECTURE 1

PRACTICE

76.0001 LECTURE 1

PROBLEM
SOLVING

PROGRAMMING
SKILL

KNOWLEDGE
OF CONCEPTS

WHAT DOES A COMPUTER DO
 Fundamentally:

◦ performs calculations

a billion calculations per second!

◦ remembers results

100s of gigabytes of storage!

 What kinds of calculations?
◦ built-in to the language

◦ ones that you define as the programmer

 computers only know what you tell them

6.0001 LECTURE 1 9

TYPES OF KNOWLEDGE
 Declarative knowledge is statements of fact.

◦ someone will win a Google
Cardboard before class ends

 Imperative knowledge is a recipe or “how-to”.
1) Students sign up for raffle

2) Ana opens her IDE

3) Ana chooses a random number between 1st and nth responder

4) Ana finds the number in the responders sheet. Winner!

6.0001 LECTURE 1 10

COMPUTERS ARE MACHINES
 how to capture a recipe in a mechanical process

 fixed program computer
◦ calculator

 stored program computer
◦ machine stores and executes instructions

6.0001 LECTURE 1 13

BASIC MACHINE ARCHITECTURE

6.0001 LECTURE 1 14

MEMORY

CONTROL

UNIT

ARITHMETIC

LOGIC UNIT

INPUT OUTPUT

program counter do primitive ops

STORED PROGRAM COMPUTER
 sequence of instructions stored inside computer

◦ built from predefined set of primitive instructions
1) arithmetic and logic

2) simple tests

3) moving data

 special program (interpreter) executes each
instruction in order
◦ use tests to change flow of control through sequence

◦ stop when done

6.0001 LECTURE 1 15

PYTHON PROGRAMS
 a program is a sequence of definitions and commands

◦ definitions evaluated

◦ commands executed by Python interpreter in a shell

 commands (statements) instruct interpreter to do
something

 can be typed directly in a shell or stored in a file that
is read into the shell and evaluated
◦ Problem Set 0 will introduce you to these in Anaconda

6.0001 LECTURE 1 23

OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things
programs can do to them
◦ Ana is a human so she can walk, speak English, etc.

◦ Chewbacca is a wookie so he can walk, “mwaaarhrhh”, etc.

 objects are
◦ scalar (cannot be subdivided)

◦ non-scalar (have internal structure that can be accessed)

6.0001 LECTURE 1 24

SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)

int

>>> type(3.0)

float

6.0001 LECTURE 1 25

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.0001 LECTURE 1 26

PRINTING TO CONSOLE
 to show output from code to a user, use print
command

In [11]: 3+2

Out[11]: 5

In [12]: print(3+2)

5

6.0001 LECTURE 1 27

EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression
<object> <operator> <object>

6.0001 LECTURE 1 28

OPERATORS ON ints and floats
 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.0001 LECTURE 1 29

if both are ints, result is int
if either or both are floats, result is float

result is float

SIMPLE OPERATIONS
 parentheses used to tell Python to do these
operations first

 operator precedence without parentheses
◦ **

◦ *

◦ /

◦ + and – executed left to right, as appear in expression

6.0001 LECTURE 1 30

BINDING VARIABLES AND
VALUES
 equal sign is an assignment of a value to a variable
name

pi = 3.14159

pi_approx = 22/7

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by
invoking the name, by typing pi

6.0001 LECTURE 1 31

ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 to reuse names instead of values

 easier to change code later

pi = 3.14159

radius = 2.2

area = pi*(radius**2)

6.0001 LECTURE 1 32

PROGRAMMING vs MATH
 in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2

area of circle

area = pi*(radius**2)

radius = radius+1

6.0001 LECTURE 1 33

CHANGING BINDINGS
 can re-bind variable names using new assignment
statements

 previous value may still stored in memory but lost the
handle for it

 value for area does not change until you tell the
computer to do the calculation again

6.0001 LECTURE 1 34

pi

radius

area

3.14

2.2

15.1976

3.2

pi = 3.14

radius = 2.2

area = pi*(radius**2)

radius = radius+1

Thank You

https://ocw.mit.edu/
https://ocw.mit.edu/terms

