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FAST PACED COURSE
 Position yourself to succeed!

◦ read psets when they come out and come back to them later

◦ use late days in emergency situations

 New to programming? PRACTICE. PRACTICE? PRACTICE! 
◦ can’t passively absorb programming as a skill

◦ download code before lecture and follow along

◦ do MITx finger exercises 

◦ don’t be afraid to try out Python commands! 
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PRACTICE
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WHAT DOES A COMPUTER DO
 Fundamentally:

◦ performs calculations

a billion calculations per second! 

◦ remembers results

100s of gigabytes of storage! 

 What kinds of calculations?
◦ built-in to the language

◦ ones that you define as the programmer

 computers only know what you tell them
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TYPES OF KNOWLEDGE
 Declarative knowledge is statements of fact.

◦ someone will win a Google 
Cardboard before class ends

 Imperative knowledge is a recipe or “how-to”.
1) Students sign up for raffle

2) Ana opens her IDE

3) Ana chooses a random number between 1st and nth responder 

4) Ana finds the number in the responders sheet. Winner!
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COMPUTERS ARE MACHINES
 how to capture a recipe in a mechanical process

 fixed program computer
◦ calculator

 stored program computer
◦ machine stores and executes instructions
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BASIC MACHINE ARCHITECTURE
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STORED PROGRAM COMPUTER
 sequence of instructions stored inside computer

◦ built from predefined set of primitive instructions
1) arithmetic and logic

2) simple tests

3) moving data

 special program (interpreter) executes each 
instruction in order
◦ use tests to change flow of control through sequence

◦ stop when done
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PYTHON PROGRAMS
 a program is a sequence of definitions and commands

◦ definitions evaluated 

◦ commands executed by Python interpreter in a shell

 commands (statements) instruct interpreter to do 
something

 can be typed directly in a shell or stored in a file that 
is read into the shell and evaluated
◦ Problem Set 0 will introduce you to these in Anaconda
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OBJECTS
 programs manipulate data objects

 objects have a type that defines the kinds of things 
programs can do to them
◦ Ana is a human so she can walk, speak English, etc.

◦ Chewbacca is a wookie so he can walk, “mwaaarhrhh”, etc.

 objects are
◦ scalar (cannot be subdivided)

◦ non-scalar (have internal structure that can be accessed)
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SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)

int

>>> type(3.0)

float
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TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3
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PRINTING TO CONSOLE
 to show output from code to a user, use print
command

In [11]: 3+2

Out[11]: 5

In [12]: print(3+2)

5
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EXPRESSIONS
 combine objects and operators to form expressions

 an expression has a value, which has a type

 syntax for a simple expression
<object> <operator> <object>
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OPERATORS ON ints and floats
 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i%j  the remainder when i is divided by j

 i**j i to the power of j
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if both are ints, result is int
if either or both are floats, result is float

result is float



SIMPLE OPERATIONS
 parentheses used to tell Python to do these 
operations first

 operator precedence without parentheses
◦ **

◦ *

◦ /

◦ + and – executed left to right, as appear in expression
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BINDING VARIABLES AND 
VALUES
 equal sign is an assignment of a value to a variable 
name

pi = 3.14159

pi_approx = 22/7

 value stored in computer memory

 an assignment binds name to value

 retrieve value associated with name or variable by 
invoking the name, by typing pi
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ABSTRACTING EXPRESSIONS
 why give names to values of expressions?

 to reuse names instead of values

 easier to change code later

pi = 3.14159

radius = 2.2

area = pi*(radius**2)
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PROGRAMMING vs MATH
 in programming, you do not “solve for x”

pi = 3.14159

radius = 2.2

# area of circle

area = pi*(radius**2)

radius = radius+1
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CHANGING BINDINGS
 can re-bind variable names using new assignment 
statements

 previous value may still stored in memory but lost the 
handle for it

 value for area does not change until you tell the 
computer to do the calculation again
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Thank You

https://ocw.mit.edu/
https://ocw.mit.edu/terms

