Estimating the value of Pi using Monte Carlo

Monte Carlo estimation
Monte Carlo methods are a broad class of computational algorithms that
rely on repeated random sampling to obtain numerical results. One of the

basic examples of getting started with the Monte Carlo algorithm is the

estimation of Pi.

Estimation of Pi

The idea is to simulate random (x, y) points in a 2-D plane with domain as
a square of side 2r units centered on (0,0). Imagine a circle inside the same
domain with same radius r and inscribed into the square. We then
calculate the ratio of number points that lied inside the circle and total

number of generated points. Refer to the image below:

We know that area of the square is 4 unit sq while that of circle is =r .

The ratio of these two areas is as follows :

area of the circle wré

i3
area of the square ~— 472 = 4

Now for a very large number of generated points,

T o_ no. of points generated inside the circle

4 ~ total no. of points generated or no. of points generated inside the square
that is,

T — 4 % 1 of points generated inside the circle

no. of points generated inside the square

The beauty of this algorithm is that we don’t need any graphics or
simulation to display the generated points. We simply generate random (x,
y) pairs and then check if z* +4* < 1. If yes, we increment the number of
points that appears inside the circle. In randomized and simulation
algorithms like Monte Carlo, the more the number of iterations, the more
accurate the result is. Thus, the title is “Estimating the value of Pi” and not
“Calculating the value of Pi". Below is the algorithm for the method:

The Algorithm

. Initialize circle_points, square_points and interval to O.

. Generate random point x.

. Generate random point y.

. Calculate d = x*x + y*y.

.Ifd <=1, increment circle_points.

. Increment square_points.

. Increment interval.

. If increment < NO_OF_ITERATIONS, repeat from 2.

. Calculate pi = 4*(circle_points/square_points).

O 00 N OO0 O & W N P

10. Terminate.

2 0of 13 11/7/2023, 1:22 AM

The code doesn’t wait for any input via stdin as the macro INTERVAL could
be changed as per the required number of iterations. Number of iterations
are the square of INTERVAL. Also, I've paused the screen for first 10
iterations with getch() and outputs are displayed for every iteration with

format given below. You can change or delete them as per requirement.

X y circle_points square_points - pi
Examples:

INTERVAL = 5

Output : Final Estimation of Pi = 2.56

INTERVAL = 10

Output : Final Estimation of Pi = 3.24

INTERVAL = 100
Output : Final Estimation of Pi = 3.0916

Python Code

import random

INTERVAL = 1000

1]
(o]

circle points

1]
(o]

square_points

Total Random numbers generated= possible x
values* possible y values
i in range(INTERVAL**2):

for

Randomly generated x and y values from a

uniform distribution

Range of x and y values is -1 to 1
rand_x = random.uniform(-1, 1)
rand_y = random.uniform(-1, 1)

Distance between (x, y) from the origin
origin_dist = rand_x**2 + rand_y**2

Checking if (x, y) lies inside the circle

iforigin_dist <=1:

circle points += 1
square_points += 1

Estimating value of pi,

pi= 4*(no. of points generated inside the

circle)/ (no. of points generated inside the square)
pi = 4 * circle_points / square_points

H#i print(rand_x, rand_y, circle points, square_points, , pi)

print("\n")

print("Final Estimation of Pi=", pi)

Output:

Final Estimation of Pi = 3.16116

Online compiler:
https://www.programiz.com/python-programming/online-compiler/

