
Lecture 3 
Green’s function for the time-dependent  

wave equation in unbounded lossless media 

 

The wave equations for the scalar potential U and vector potential A  
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where f , t( )r  is a known source distribution. The factor v is the velocity of 
propagation in the medium, assumed here to be lossless and non-dispersive. 

To solve (1) it is useful to find a Green's function for the equation. Since the 
time is involved, the Green's function will depend on the variables (x, x', t, t'), and 
will satisfy the equation,  
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Then in unbounded space the solution of (1) will be  
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To find G we consider the Fourier transform of both sides of (2). The delta 
functions on the right have the representation, 
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and G also has the 4dimensional Fourier transform 
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The Fourier transform g , ω( )k  is to be determined. When (3) and (4) are substituted 
into the defining equation (2), it turns out that g , ω( )k  is  
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When g , ω( )k  is substituted into (4) and the integration over ω  is begun, 
there appears a singularity in the integrand at ω kv=  , and so we cannot do 
the integral along the real ω axis. Consequently a physically-based solution for (5) 
is needed. The Green's function satisfying (13) represents the wave disturbance 
caused by a point source at ′r  which is turned on only at t t′= . We know that 
such a wave disturbance propagates outwards as a spherically diverging wave 
with a velocity v. Hence we demand that our solution for G have the following 
properties:  

(a) G 0=  everywhere for t t′ .  

(b)  G represents outgoing waves for t t .′   

We can do the ω  integration as a Cauchy integral in the complex ω plane by 
adding a return contour either far above or far below the real axis. If this additional 
contour adds exactly zero then the closed contour integral will equal the inverse 
Fourier transform along that contour. The advantage of using the closed contour 
is that the integral can be easily done using the residues. For t t′  the integral 
along the real axis in (4) is equivalent to the contour integral around a path C 
closed in the lower half-plane, since the contribution on the semicircle at infinity 
vanishes exponentially. On the other hand, for t t′ , the contour must be closed 
in the upper half-plane, as shown in the figure below by pathC′ .  
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In order to make G vanish for t t′  we must imagine that the poles at 
ω vk=  are infinitesimally displaced below the real axis. Then the integral over C 
for t t′  will give a nonvanishing contribution, while the integral over C for t t′  
will vanish. The displacement of the poles can be accomplished mathematically 
by writing ω iε( )+  in place of ω  in (5). Then the Green's function is given by  
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where , t t ,′ ′R r r= =   and ε  is a positive infinitesimal.  

The integration over ω  for 0   can be done with Cauchy's theorem 
applied around the contour C, giving  
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Upon using the identity ix ixx e e 2isin ( )/( )−−= , the last equation simplifies to 
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Now, we still have to perform the integration over 3d k 0( ).   For this purpose we 
introduce spherical coordinates in k space, where R gives the direction of the zk
axis, as shown in the figure below. Because this axis can be chosen arbitrarily, this 
is always possible. We obtain 
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When this is substituted into the expression (6), we get 
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Since the integrand is even in k, the integral can be written over the whole 
interval, k∞ ∞ .−    With a change of variable x vk,=  the above equation can 
be written as 

2

R Ri x i xi x i x v v
2

R R R Ri x i x i x i x
v v v v

2

1 RG , x x dx
v2π R

1 e e e e dx
4 2π R

1 e e e e dx
4 2π R

1 R R R Rδ δ δ δ
8πR v v v v

( ) ( ) ( ) ( )

( ) sin( ) sin( )
( )

( )( )
( )

[ ]
( )

[ ( ) ( ) ( ) ( )].

∞

∞

∞

∞

∞

∞

−

−

−

r

 

   

   

 

+ +

=

=

= +

= + + +



   



 

 

     

∫

∫

∫

 

The argument of the first and fourth terms never vanish (remember 0  ), hence 
the Green's function is  
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This Green's function is sometimes called the retarded Green's function because 
it exhibits the causal behavior associated with a wave disturbance. The effect 
observed at the point r at time t is due to a disturbance which originated at an 

earlier or retarded time t t
v
′
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   at the point ′r . 

The solution for the wave equation (1) in the absence of boundaries is so 
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The integration over t′  can be performed to yield the so-called retarded solution,  
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The function f , t ret[ ( )]′ ′r  means that the time t′  is to be evaluated at the retarded 

time t t
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 Turning back to electromagnetic potentials, the electrostatic potential is 
determined by  
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The solution of A can be constructed in exactly the same way. The vectors A and 
J are first decomposed into rectangular components: 
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which is the retarded vector potential. 
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