General Relativity and Cosmology

Alexey Golovnev Centre for Theoretical Physics British University in Egypt

Zewail City of Science and Technology, August 2024 2nd ArPS Summer School on Advanced Physics

The Plan

Gravity as Geometry

Differential Geometry

Manifolds – Vectors and Tensors Connection – Covariant Derivatives Riemannian geometry – Curvature

General Relativity

Test particles - Einstein equations - Einstein-Hilbert action

Cosmology

The Universe around us, the red shift Friedmann equations – Cosmic history – Inflation

Equivalence principle

The gravitational mass is the same as the inertial mass.

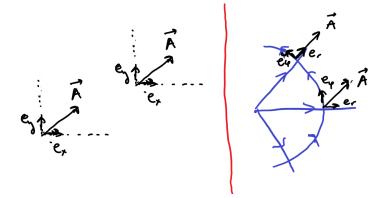
Shouldn't we look for geometry?

Lecture 1

Basics of Differential Geometry

-∢ ≣ ▶

Parallel transport on a plane in non-Cartesian coordinates



On the right, the vector components are changed.

Let's parametrise the change of vector field components as

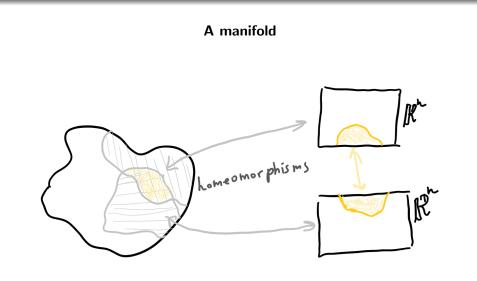
$$\delta A^{\nu} = -\Gamma^{\nu}_{\mu\alpha}A^{\alpha}\delta x^{\mu}$$

where the coefficients Γ are called the connection coefficients or Christoffel symbols.

The scalar products are now calculated as $\overrightarrow{A} \cdot \overrightarrow{B} = g_{\mu\nu}A^{\mu}B^{\nu}$, or we can define a linear functional $A_{\nu} \equiv g_{\mu\nu}A^{\mu}$.

For the functionals, $\underline{A}(\overrightarrow{B}) \equiv A_{\mu}B^{\mu}$, we need the transport law

$$\delta A_{\nu} = \Gamma^{\alpha}_{\mu\nu} A_{\alpha} \delta x^{\mu}.$$



What is a vector?

æ

< ロ > < 同 > < 三 > < 三 >

Let's look at a germ of smooth functions at a given point.

Vectors define operators of differentiating along the vector:

$$\overrightarrow{A} \quad \longleftrightarrow \quad A^{\mu} \frac{\partial}{\partial x^{\mu}}$$

In a given coordinate system, there is a basis of vectors $\frac{\partial}{\partial x^{\mu}}$. Let's denote the dual basis as dx^{μ} .

Then, the linear functionals on the tangent space (i.e. elements of cotangent space) can be represented as

$$\underline{A} \quad \longleftrightarrow \quad A_{\mu} dx^{\mu}.$$

If we perform a change of variables, $x \longrightarrow \tilde{x} = \tilde{x}(x)$,

$$A^{\mu} \frac{\partial}{\partial x^{\mu}} \longrightarrow \tilde{A}^{\mu} \frac{\partial}{\partial \tilde{x}^{\mu}},$$

the vector components must obviously be changed as

$$ilde{A}^{\mu} = A^{
u} rac{\partial ilde{x}^{\mu}}{\partial x^{
u}}.$$

Analogously, for the linear functionals

$$A_{\mu} = ilde{A}_{
u} rac{\partial ilde{x}^{
u}}{\partial x^{\mu}},$$

i.e. the change by inverse matrix.

A metric $g_{\mu\nu}dx^{\mu}dx^{\nu}$ on the manifold can be thought of as a linear mapping from tangent space to cotangent space $\mathfrak{g} : \overrightarrow{A} \longrightarrow \overleftarrow{A}$ by agreeing that $A_{\mu} \equiv g_{\mu\nu}A^{\nu}$. It transforms as

$$g_{\mu
u} = ilde{g}_{lphaeta} rac{\partial ilde{x}^lpha}{\partial x^\mu} rac{\partial ilde{x}^eta}{\partial x^
u}.$$

And so on and so forth, for tensors of arbitrary ranks. For example, for the inverse metric $g^{\mu\nu}$:

$$\tilde{g}^{\mu\nu} = g^{lphaeta} \frac{\partial \tilde{x}^{\mu}}{\partial x^{lpha}} \frac{\partial \tilde{x}^{
u}}{\partial x^{eta}}.$$

Now, we can agree on the law of parallel transport as

$$\delta A^{\nu} = -\Gamma^{\nu}_{\mu\alpha}A^{\alpha}\delta x^{\mu},$$

 $\delta A_{\nu} = \Gamma^{\alpha}_{\mu\nu}A_{\alpha}\delta x^{\mu}.$

By introducing a connection, we choose horizontal directions in the tangent bundle.

We then define the covariant derivative as showing the difference from the parallel transport:

$$\begin{split} \bigtriangledown_{\mu} A^{\nu} &\equiv \partial_{\mu} A^{\nu} + \Gamma^{\nu}_{\mu\alpha} A^{\alpha}, \\ \bigtriangledown_{\mu} A_{\nu} &\equiv \partial_{\mu} A_{\nu} - \Gamma^{\alpha}_{\mu\nu} A_{\alpha}, \\ \bigtriangledown_{\mu} g_{\alpha\beta} &\equiv \partial_{\mu} g_{\alpha\beta} - \Gamma^{\nu}_{\mu\alpha} g_{\nu\beta} - \Gamma^{\nu}_{\mu\beta} g_{\alpha\nu}, \end{split}$$

One can check that the usual laws of differentiation apply, such as

$$\bigtriangledown_{\alpha} \left(g_{\mu\nu} \mathcal{A}^{\nu}
ight) = \mathcal{A}^{
u} \bigtriangledown_{\alpha} g_{\mu\nu} + g_{\mu\nu} \bigtriangledown_{\alpha} \mathcal{A}^{
u}.$$

We also need that things like $\nabla_{\mu}A_{\nu} \equiv \partial_{\mu}A_{\nu} - \Gamma^{\alpha}_{\mu\nu}A_{\alpha}$ are tensors, so that it is all about coordinate-independent geometry.

It implies

$$\Gamma^{\kappa}_{\mu\nu} = \frac{\partial x^{\kappa}}{\partial \tilde{x}^{\rho}} \left(\frac{\partial \tilde{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial \tilde{x}^{\beta}}{\partial x^{\nu}} \tilde{\Gamma}^{\rho}_{\alpha\beta} + \frac{\partial^{2} \tilde{x}^{\rho}}{\partial x^{\mu} \partial x^{\nu}} \right)$$

as can be easily checked.

Euclidean spaces in Cartesian coordinates have $\Gamma^{\alpha}_{\mu\nu} = 0$.

If to follow the example of Euclidean spaces as close as possible, we demand two properties of a connection:

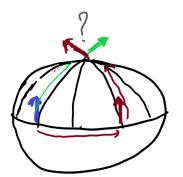
No torsion:
$$T^{\alpha}{}_{\mu\nu} \equiv \Gamma^{\alpha}_{\mu\nu} - \Gamma^{\alpha}_{\nu\mu} = 0$$

No nonmetricity:
$$Q_{\alpha\mu\nu} \equiv \bigtriangledown_{\alpha} g_{\mu\nu} = 0$$

It yields the Levi-Civita connection:

$$\Gamma^{
ho}_{lphaeta} = rac{1}{2} g^{
ho\mu} \left(\partial_lpha g_{\mueta} + \partial_eta g_{lpha\mu} - \partial_\mu g_{lphaeta}
ight).$$

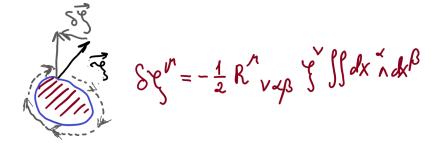
Curvature!



The result of the parallel transport depends on the path taken !!!

One more property of a general connection, on top of torsion and nonmetricity.

In particular, after a parallel transport over a closed loop, the vector might not be the same as before.



$$R^{\alpha}_{\ \beta\mu\nu} \equiv \partial_{\mu}\Gamma^{\alpha}_{\nu\beta} - \partial_{\nu}\Gamma^{\alpha}_{\mu\beta} + \Gamma^{\alpha}_{\mu\rho}\Gamma^{\rho}_{\nu\beta} - \Gamma^{\alpha}_{\nu\rho}\Gamma^{\rho}_{\mu\beta}$$

The Riemann tensor or the curvature tensor:

$$R^{\alpha}_{\ \beta\mu\nu} = \partial_{\mu}\Gamma^{\alpha}_{\nu\beta} - \partial_{\nu}\Gamma^{\alpha}_{\mu\beta} + \Gamma^{\alpha}_{\mu\rho}\Gamma^{\rho}_{\nu\beta} - \Gamma^{\alpha}_{\nu\rho}\Gamma^{\rho}_{\mu\beta}.$$

In a Euclidean space, this tensor is zero. For the Levi-Civita connection, the converse is <u>almost</u> true.

Another possible approach to curvature is:

$$\begin{split} \left[\bigtriangledown_{\mu} , \bigtriangledown_{\nu} \right] \xi^{\alpha} &= \bigtriangledown_{\mu} \left(\partial_{\nu} \xi^{\alpha} + \Gamma^{\alpha}_{\nu\beta} \xi^{\beta} \right) - \bigtriangledown_{\nu} \left(\partial_{\mu} \xi^{\alpha} + \Gamma^{\alpha}_{\mu\beta} \xi^{\beta} \right) = \\ &= \partial_{\mu} \left(\partial_{\nu} \xi^{\alpha} + \Gamma^{\alpha}_{\nu\beta} \xi^{\beta} \right) + \Gamma^{\alpha}_{\mu\rho} \left(\partial_{\nu} \xi^{\rho} + \Gamma^{\rho}_{\nu\beta} \xi^{\beta} \right) - \Gamma^{\rho}_{\mu\nu} \left(\partial_{\rho} \xi^{\alpha} + \Gamma^{\alpha}_{\rho\beta} \xi^{\beta} \right) - \\ &- \partial_{\nu} \left(\partial_{\mu} \xi^{\alpha} + \Gamma^{\alpha}_{\mu\beta} \xi^{\beta} \right) - \Gamma^{\alpha}_{\nu\rho} \left(\partial_{\mu} \xi^{\rho} + \Gamma^{\rho}_{\mu\beta} \xi^{\beta} \right) + \Gamma^{\rho}_{\nu\mu} \left(\partial_{\rho} \xi^{\alpha} + \Gamma^{\alpha}_{\rho\beta} \xi^{\beta} \right) = \\ &= R^{\alpha}_{\beta\mu\nu} \xi^{\beta} - T^{\rho}_{\mu\nu} \bigtriangledown_{\rho} \xi^{\alpha}. \end{split}$$

The curvature tensor

$$R^{\alpha}_{\ \beta\mu\nu} = \partial_{\mu}\Gamma^{\alpha}_{\nu\beta} - \partial_{\nu}\Gamma^{\alpha}_{\mu\beta} + \Gamma^{\alpha}_{\mu\rho}\Gamma^{\rho}_{\nu\beta} - \Gamma^{\alpha}_{\nu\rho}\Gamma^{\rho}_{\mu\beta}$$

is always antisymmetric:

$$R^{\alpha}_{\ \beta\mu\nu} = -R^{\alpha}_{\ \beta\nu\mu}.$$

For the Levi-Civita connection, more properties are valid:

$$egin{aligned} &R^{lpha}_{eta\mu
u}+R^{lpha}_{\mu
ueta}+R^{lpha}_{
ueta\mu}=0,\ &R_{lphaeta\mu
u}=-R_{etalpha\mu
u},\ &R_{lphaeta\mu
u}=R_{\mu
ulphaeta},\ &
onumber\ &R^{lpha}_{eta\mu
u}+
abla_{\mu}R^{lpha}_{
u
ho}+
abla_{
u}R^{lpha}_{eta
ho\mu}=0. \end{aligned}$$