

Der Forschung | der Lehre | der Bildung

FCC-EE TUNING SIMULATIONS WITH PYAT

Elaf Musa FCC-ee tuning WG meeting

May 8th, 2024

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Table of content

FCC

- Previous correction procedure results (Errors on ARC).
- Correction results with sextupoles ramping (Errors on IR and ARC).
- Different optics correction algorithms.

Previous correction results (V22 @ Z FODO arc lattice at 45 Gev, 4D)

• Applying Hor & Ver displacement errors to **ARC** components

10 seeds (mean values)	rms orbit x (µm)	rms orbit y (µm)	Δβx/βx%	Δβу/βу%	∆ ηx (mm)	∆ ηy (mm)	ε _h (nm)	ε _v (pm)
10	709.51	905.97	0.62	1.28	1304.66	11689.3	-	-
Cor	2.19	2.26	0.14	0.23	0.51	0.17	0.71	0.15
20	1230.71	1710.57	1.197	2.11	2203.8	20984.3	-	-
Cor	4.51	4.53	0.72	0.54	0.93	0.36	0.71	1.37

Including sextupole ramping

- 1. Sextupoles off.
- 2. Errors applied.
- 3. Increasing sextupoles strength in steps of 10%:

-Orbit correction (One iteration with **1500** singular values).

-Tune correction (all arc QF & QD, function provided by S. Liuzzo).

-When correction failed, keep the previous statue.

- 4. Chromaticity correction (all arc SF & SD).
- Beta beating and coupling correction (LOCO iterations with tune & chroma correction in between).
- 6. Final tune and chromaticity correction.
- 7. Emittance calculations at 45.6Gev.

Correction results with sextupole ramping (at 45.6 Gev, 4D)

Applying Hor & Ver displacement errors to ARC components 20 & 30 μm

FCC

10 so (mean)	eeds values)	rms orbit x (µm)	rms orbit y (µm)	Δβx/βx%	∆βу/βу%	Δ ηx (mm)	∆ ηy (mm)	ε _h (nm)	ε _v (pm)
20 µm on arc quads &	After Sextupoles ramping	1.80	1.67	1.24	1.65	8.85	9.86	0.70	0.37
sextupoles	Final cor. result	1.84	1.75	0.34	0.56	0.86	0.33	0.71	0.56

10 s (mean	eeds values)	rms orbit x (µm)	rms orbit y (µm)	Δβx/βx%	∆βу/βу%	Δ ηx (mm)	Δ ηy (mm)	ε _h (nm)	ε _v (pm)	
30 μm on arc quads & sextupoles	After Sextupoles ramping	2.65	2.57	1.69	3.56	13.96	12.48	0.71	0.71	
	Final cor. result	2.80	2.88	0.54	0.64 1.73 0.54 0.71 3.66					
Beta beating and coupling co with tune & chroma correction								correcti tion in b	on (LOC etween)	O iteration:

Correction results with sextupole ramping (at 45.6 Gev, 4D)

Applying Hor & Ver displacement errors to ARC components 80 μm

10 se (mean v	eeds values)	rms orbit x (μm)	rms orbit y (µm)	Δβx/βx%	∆βу/βу%	Δ ηx (mm)	Δ ηy (mm)	ε _h (nm)	ε _v (pm)
10 seeds (mean values) With After Sextup ramp 80 µm on arc quads & sextupoles Sextupoles Coup col Final	With err	4055.12	6622.46	7.63e-7	0.0002	7871.54	67371.9	-	-
	After Sextupoles ramping	6.81	6.77	4.94	8.14	38.01	35.94	0.71	6.19
80 μm on arc quads & sextupoles	Beta beating cor.	8.06	10.61	1.61	2.48	33.04	35.28	0.71	205.46
	Coupling cor.	8.57	12.38	2.79	6.93	1.31	2.45	0.71	360.16
	Final cor. result	8.59	12.72	1.53	2.50	6.53	2.39	0.71	407.25

Correction results with sextupole ramping (at 1 GeV, 4D) at 45.6 Gev seeds dose not complete the ramping

Applying Hor & Ver displacement errors to ARC & IR components 30 μm

1 se	eed	rms orbit x (μm)	rms orbit y (µm)	Δβx/βx%	∆βу/βу%	∆ ηx (mm)	∆ ηy (mm)	ε _h (nm)	ε _v (pm)
	With err	4255.98	24823.40	1.2e-6	0.000475	9972.16	360364	-	-
30 µm on arc & IR quads &	After Sextupoles ramping	3.97	5.20	4.34	168.24	11.49	32.588	-	-
sextupoles	Final cor. result	3.99	5.28	7.74	60.27	8.35	4.31	0.76	12.04

Correction results with sextupole ramping (Hor & Ver displacement errors to ARC & IR)

Remarks

- Vertical beta beating increased significantly through the ramping.
- In many seeds the lattice optics becomes unstable after applying the optics correction results.

Optics correction performed (LOCO):

- Using all quadruples in the fit (arc & ir).
- All bpms were used and 20 steering magnets.

Attempts to improve optics correction (LOCO), however, results remained unchanged:

- Adjusting Singular Value Cut (600, 1000, 1500).
- Increasing number of used correctors from 20 to 40.
- ORMs and Jacobeans calculated while sextupoles are ON.

Different optics correction algorithms.

- 1. Sextupoles off.
- 2. Errors applied.
- 3. Increasing sextupoles strength on steps of 10%:

-Orbit correction (One iteration with **1500** singular values).

-Tune correction (all arc QF & QD, function provided by S. Liuzzo).

-When correction failed, keep the previous statue.

- 4. Chromaticity correction (all arc SF & SD).
- 5. Instead of LOCO: rematching of the phase advance at the BPMs for beta beating and hor. dispersion cor and using the coupling resonant driving terms (RDT) for coupling correction.
- 6. Final tune and chromaticity correction.
- 7. Emittance calculations at 45.6Gev.

Different optics correction algorithms.

Beta beating & Hor. Dispersion correction :

- Using rematching of the phase advance at the BPMs.
- All normal quadepoles (1856).
- Adjusting SVD cut off and weights $(w_{\phi x}, w_{\phi y}, w_{Dx} = 0.5)$.

Coupling correctoin:

- Using coupling resonant driving terms (RDTs)
- All normal quadepoles (1856) and skews (at sextupoles 632)
- Functions to correct RDTs + dispersion + tune based on pyAT, analytical. <u>commissioningsimulations/correction/optics_coupling/resonance_driving_terms.py · main ·</u> <u>BeamDynamics / CommissioningSimulations · GitLab (esrf.fr)</u>

$$\Delta \vec{k_1} = -\mathbf{R}^{-1}(w_{\phi} \Delta \vec{\phi}, w_D \Delta \vec{D}, \Delta Q_x, \Delta Q_y)$$

$$\begin{pmatrix} \vec{f_{1001}} \\ \vec{f_{1010}} \end{pmatrix}_{meas} = -\mathbf{M} \, \vec{\mathbf{J}}$$

2 iter of beta beating correction (LOCO)

10 se (mean v	eeds values)	rms orbit x (μm)	rms orbit y (µm)	Δβx/βx%	∆βу/βу%	Δ ηx (mm)	∆ ηy (mm)	ε _h (nm)	ε _v (pm)
80 µm on arc quads	After Sextupoles ramping	6.81	6.77	4.94	8.14	38.01	35.94	0.71	6.19
& sextupoles	Beta beating cor.	8.06	10.61	1.61	2.48	33.04	35.28	0.71	205.46

Beta beating correction using phase advance

10 s (mean	eeds values)	rms orbit x (μm)	rms orbit y (µm)	Δβx/βx%	∆βу/βу%	Δ ηx (mm)	Δ ηy (mm)	ε _h (nm)	ε _v (pm)	
80 μm on arc quads	After Sextupoles ramping	6.83	6.57	3.80	8.96	34.52	42.17	0.71	6.12	Pottor vortion
& sextupoles	Beta beating cor.	8.08	8.02	4.33	2.29	10.18	41.32	0.70	43.75	emittance compared to

r vertical

11

Including RDTs coupling correction

Work is ongoing on choosing the proper variables (# of singular vectors, weights, ..)

10 se (mean y	eeds values)	rms orbit x (µm)	rms orbit y (µm)	Δβx/βx%	Δβу/βу%	∆ ηx (mm)	∆ ηy (mm)	ε _h (nm)	ε _v (pm)	
80 μm on arc quads	Coupling cor.	8.90	8.75	3.43	2.32	16.65	34.63	0.71	65.51	
& sextupoles	Final cor. result	9.03	9.13	4.44	28.076	16.92	35.95 Bosu	0.71	103.14	et turv
and chromaticity fi									ticity fitti	na

To do next

- RDTs coupling correction.
- Sextupole ramping with beta beating, dispersion and coupling correction steps in between.
- Investigate the impact of errors ramping.
- Magnets to be used for correcting tune & chromaticity.

THANK YOU FOR YOUR ATTENTION