Non-Abelian ferromagnets

Konstantinos Sfetsos National and Kapodistrian University of Athens

University of Cyprus, 24 May 2024

Based on work with A.P. Polychronakos (City Coll., N.Y.)

- ▶ Nucl.Phys. B994 (2023) 116314, 2305.19345 [hep-th]
- ▶ Nucl.Phys. B996 (2023) 116353, 2306.01051 [hep-th]
- ▶ Nucl.Phys. B999 (2024) 116434, 2310.16887 [hep-th]
- ▶ and in progress.

General settings and context – Motivation

Symmetries in physics

Discrete (permutation, lattice) or continuous (rotations, translations, internal)

 $SU(N)$ is a continuous symmetry arising in many systems.

- \blacktriangleright Spin $SU(2)$
- \blacktriangleright Isospin $SU(2)$
- \blacktriangleright Flavor $SU(3)$
- \blacktriangleright Color $SU(3)$
- **Grand Unified Theories** $SU(5)$,...

Any quantum situation invariant under change among N states. Defining representation: $N \times N$ unitary matrices.

General motivation I - Some basic math/phys questions

 \triangleright The total spin of 3 spin-1/2 particles could be either 1/2 or 3/2 with multiplicities 2 and 1, i.e.

$$
2\otimes 2\otimes 2=2\oplus 2\oplus 4
$$

 \triangleright Tensor product of *n* spin-1/2 reps of $SU(2)$: What is the multiplicity $d_{n,i,1/2}$ of the spin-*j* rep. in the decomposition?

$$
\underbrace{2 \otimes 2 \otimes 2 \otimes \cdots \otimes 2}_{n \text{ spin } 1/2} = \sum_j d_{n,j,1/2} \oplus (2j+1) .
$$

 \triangleright What about *n* spin-*s* reps of $SU(2)$? What is then $d_{n,i,s}$? $(2s+1)\otimes (2s+1)\otimes \cdots \otimes (2s+1)$ $\frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ n spin s $=$ \sum_{j} $d_{n,j,s} \oplus (2j+1)$

Relation to random walks [Polychronakos-KS 16]

 \triangleright Similar questions for $SU(N)$. What is the multiplicity of a general Young Tableau (YT) arising in the decomposition of n fundamentals? Schematically:

In there anything interesting happening for large *n* and/or N :

$$
\blacktriangleright \text{ If } N = \mathcal{O}(1) \text{ and } n \gg 1?
$$

▶ If $N, n \gg 1$ with some ratio kept constant?

General motivation II - Physics applications

- \triangleright SU(N)-matrix models:
	- \triangleright To describe non-perturbative aspects in string theory [Gross-Migdal 90, Douglas-Shenker 90]
	- ▶ Aspects of black hole Physics (thermalization, information "paradox" etc) [Kazakov-Kostov-Kutasov 01]

 \blacktriangleright Large N-expansion of $SU(N)$ gauge theories:

- ▶ Led to a new understanding of the perturbative expansion by reorganizing Feynman diagrams in a topological expansion ['t Hooft 74]
- ▶ Eventually to the AdS/CFT correspondence, a breakthrough in our understanding of QFT and Gravity [Maldacena 97]
- \blacktriangleright Magnetic systems with $SU(N)$ symmetry in the context of ultracold atoms, spin chains and of interacting atoms on lattice cites and in the presence of magnetic fields.
- \blacktriangleright Phase transitions for large *n* and/or N.

Outline

 \blacktriangleright The $SU(N)$ ferromagnetic model: Construction, silent simplifications and essential properties.

 \triangleright Solution in the thermodynamic limit and finite N. Stability and Young tableaux. Spontaneous symmetry breaking.

▶ Phase transitions:

- \triangleright $SU(2)$: A single Marie Curie temperature below which spontaneously magnetized occurs; a 2nd order phase transition.
- \triangleright $SU(N)$, with $N = 3, 4, \ldots$: More structure and critical temperatures...stable as well unstable phases. Phase transitions are different.
- ▶ Turning on magnetic fields.
- Earge n, N with N/n^2 fixed. Novel phase structure.
- ▶ Concluding remarks.

The $SU(N)$ ferromagnet

Consider *n* atoms on a lattice with two-body interactions.

- ▶ Each atom has N degenerate states $|s\rangle$, $s = 1, 2, ..., N$.
- \blacktriangleright The generic two-body interaction is

$$
{\cal H}_{12} = \sum_{s_1, s_1', s_2, s_2' = 1}^N h_{s_1 s_2; s_1' s_2'} \ket{s_1}\bra{s_1'} \otimes \ket{s_2}\bra{s_2'}
$$

▶ Define j_a , $a = 0, 1, ..., N^2 - 1$, the generators of $U(N)$ in the fundamental N-dim rep. (*j*₀ is the $U(1)$ part). The *j*_a's form a complete basis for the operators on an N-dim space. Hence,

$$
\mathcal{H}_{12} = \sum_{a,b=0}^{N^2-1} h_{ab} \, j_{1,a} \, j_{2,b} \; , \ \ \, h_{ab} = h^*_{ab} \; ,
$$

where

$$
j_{1,a} = j_a \otimes \mathbb{I}
$$
, $j_{2,a} = \mathbb{I} \otimes j_a$,

are fundamental $U(N)$ operators on states of atoms 1 and 2.

Assume invariance under change of basis $|s\rangle$:

▶ Interactions will essentially be the operators exchanging the states of the atoms of the form (up to a constant)

$$
H_{12} = c_{12} \sum_{a=1}^{N^2-1} j_{1,a} j_{2,a}
$$

- \triangleright $SU(N)$ emerges from invariance under general changes of basis.
- \blacktriangleright The full Hamiltonian will be of the form

$$
H = \sum_{r,s=1}^{n} c_{r,s} \sum_{a=1}^{N^2-1} j_{r,a} j_{s,a} ,
$$

where c_r , coupling between atoms r and s.

- ▶ Further symmetries and more:
	- ▶ Translation invariance: $c_{r,\vec{s}} = c_{\vec{r}-s}$ and $c_0 = 0$
	- **Ferromagnetic:** $c_r < 0$

Mean field approximation

- Interactions are assumed reasonably long range.
- ▶ Average of neighbors approximated with the full lattice average

$$
\sum_{\mathsf{s}} c_{\mathsf{s}} j_{\mathsf{r}+\mathsf{s},a} \simeq \Bigl(\sum_{\mathsf{s}} c_{\mathsf{s}}\Bigr) \, \frac{1}{n} \sum_{s=1}^n j_{\mathsf{s},a} = -\frac{c}{n} J_a \; ,
$$

where the total $SU(N)$ generators and average coupling is

$$
J_a = \sum_{s=1}^n j_{s,a} \; , \quad c = - \sum_s c_s > 0 \; .
$$

▶ Then, the full Hamiltonian becomes [Polychronakos-KS 23]

$$
H = -\frac{c}{n} \sum_{a=1}^{N^2 - 1} \left(J_a^2 - \sum_{s=1}^n j_{s,a}^2 \right) = -\frac{c}{n} \sum_{a=1}^{N^2 - 1} J_a^2 + \text{const.}
$$

= $-\frac{c}{n} C_2(J)$,

where $C_2(J)$ is the quadratic Casimir.

Turning on magnetic fields

We may consider a global external field contributing one-body terms

$$
H_B=-\sum_{i=1}^{N-1}B_iH_i
$$

where H_i are commuting Cartan generators.

Therefore the total Hamiltonian is [Poly-KS 23]

$$
H = H_I + H_B = -\frac{c}{n}C_2(J) - \sum_{i=1}^{N-1} B_i H_i.
$$

Crash course on $SU(N)$ representation theory

 \blacktriangleright Irreps of $SU(N)$ are labeled by a set of distinct ordered integers $\{k_i\}$

$$
k_1 > k_2 > \cdots > k_N \geqslant 0.
$$

The usual Young tableaux (YT)

is labeled by ℓ_i : the $\#$ of boxes in the i th row

 $\ell_i = k_i - k_N + i - N$, $\ell_1 \geq \ell_2 \geq \cdots \geq \ell_{N-1} \geq 0$.

 \blacktriangleright The k_i -representation is redundant since we may shift $k_i \rightarrow k_i + c$. This is the $U(1)$ charge. We fix the redundancy by

$$
\sum_{i=1}^N k_i = n + \frac{N(N-1)}{2}
$$

.

Basic examples:

► The singlet representation
$$
(n = 0)
$$
:
\n $\ell_i = 0$ or $k_i = N - i$, $\forall i = 1, 2, ... N$.

 \blacktriangleright The fundamental representation $(n = 1)$:

 $\ell_1 = 1$ or $k_1 = N$, the rest as in singlet

 \blacktriangleright The symmetric representation $(n = 2)$:

 $\ell_1 = 2$ or $k_1 = N + 1$, the rest as in singlet

 \blacktriangleright The antisymmetric representation $(n = 2)$:

 $\ell_1 = \ell_2 = 1$ or $k_1 = N$, $k_2 = N - 1$, the rest as in singlet

The multiplicity

What is the multiplicity $d_{n,k}$ of each irrep k arising in the decomposition of n fundamentals of $SU(N)$?

Recall that, schematically:

$$
\boxed{\underline{\otimes} \qquad \qquad \otimes \cdots \otimes \qquad \qquad } = \sum_{\mathbf{k}} d_{n,\mathbf{k}}
$$

The result is [Poly-KS 23]

$$
d_{n,\mathbf{k}} = \delta_{k_1 + \dots + k_N, n + N(N-1)/2} \prod_{j>i=1}^N (S_i - S_j) D_{n,\mathbf{k}} \, .
$$

where

$$
D_{n,\mathbf{k}} = \frac{n!}{\prod_{r=1}^{N} k_r!} ,
$$

and where S_i acts by replacing k_i by $k_i - 1$.

A closed expression can be also obtained.

$$
d_{n; \mathbf{k}} = n! \frac{\Delta(\mathbf{k})}{\prod_{i=1}^{N} k_i!}
$$
, $\sum_{i=1}^{N} k_i = n + \frac{N(N-1)}{2}$.

▶ where the Vandermonde determinant is

$$
\Delta(\mathbf{k}) = \prod_{j>i=1}^N (k_i - k_j).
$$

 \blacktriangleright The dimension of the irrep is

$$
\text{tr}_{\mathbf{k}}1\!\!1 = \text{dim}(\mathbf{k}) = \prod_{j>i=1}^{N} \frac{k_i - k_j}{j - i} = \frac{\Delta(\mathbf{k})}{\prod_{s=1}^{N-1} s!} ,
$$

\blacktriangleright The quadratic Casimir is

$$
C^{(2)}(\mathbf{k}) = \frac{1}{2} \sum_{i=1}^{N} k_i^2 + \text{const.} .
$$

For $SU(2)$: We have one-row reps.

$$
\ell_1 = k_1 - k_2 - 1 = 2j
$$
, $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$

 \blacktriangleright Then the multiplicity of the *j*-spin rep arising form the decomposition of *n* spin- $\frac{1}{2}$ reps is

$$
d_{n,j,1/2} = \frac{n! (2j+1)}{\left(\frac{n}{2} - j\right)!\left(\frac{n}{2} + j + 1\right)!} \; ,
$$

- ▶ The dimension of the irrep is $k_1 k_2 = 2j + 1$.
- \triangleright As a check the following identity holds

$$
\sum_{j=j_{\min}}^{n/2} (2j+1)d_{n,j}=2^n,
$$

where j_{min} equals 0 or $1/2$ if *n* is even or odd.

Statistical mechanics of the $SU(N)$ ferromagnet

The partition function At temperature $\mathcal{T}=\beta^{-1}$ this is defined as

$$
Z = \sum_{\text{states}} e^{-\beta H} = \sum_{\langle \mathbf{k} \rangle} d_{n; \mathbf{k}} e^{\frac{\beta c}{n} C^{(2)}(\mathbf{k})} \operatorname{tr}_{\mathbf{k}} e^{\beta \sum_{j=1}^{N} B_{j} H_{j}} ,
$$

where $\langle k \rangle$ denotes ordered integers. Working out the details [Poly-KS]

$$
Z = \sum_{\mathbf{k}} \delta_{k_1 + \dots + k_N, n} \frac{1}{\Delta(\mathbf{z})} \frac{n!}{\prod_{r=1}^N k_r!} \prod_{j>i=1}^N (S_i^{-1} - S_j^{-1}) e^{\frac{\beta c}{2n} \sum_s k_s^2 + \beta B_s k_s}
$$

.

where the Vandermonde determinant

$$
\Delta(\mathbf{z}) = \prod_{j>i=1}^N (z_j - z_i), \quad z_j = e^{\beta B_j}.
$$

Thermodynamic limit $n \gg 1$

The rank of the group $N = \mathcal{O}(1)$.

- A typical k_i is of order *n*, also the exponent in $e^{\frac{\beta c}{2n} \sum_s k_s^2 + \beta B_s k_s}$
- Any prefactor polynomial in *n* is irrelevant, as is $\Delta(z)$, and $\prod_{j>i}(\pmb{S}^{-1}_i-\pmb{S}^{-1}_j)$ which produces subleading factors.
- ▶ Apply to $k_r!$ the Stirling approximation.

 \blacktriangleright In addition.

$$
k_i = nx_i , \quad c = NT_0 ,
$$

introducing intensive quantities x_i and a temperature scale T_0 .

▶ Altogether we obtain

$$
Z = \sum_{\mathbf{x}} \delta_{x_1 + \dots + x_N, 1} e^{-n\beta F(\mathbf{x}) + \mathcal{O}(n^0)},
$$

where the free energy of the system is

$$
F(\mathbf{x}) = \sum_{i=1}^{N} \left(Tx_i \ln x_i - \frac{NT_0}{2} x_i^2 - B_i x_i \right)
$$

Equilibrium

Introduce a Lagrange multiplier λ for the condition $\sum_i x_i = 1$ and perform a saddle point analysis:

 \blacktriangleright The saddle point conditions are

$$
\partial_i F_\lambda = T \ln x_i - NT_0 x_i - B_i - \lambda = 0 ,
$$

$$
\sum_i x_i = 1, \quad i = 1, 2, ..., N .
$$

▶ Eliminating *^λ*

$$
T \ln \frac{x_i}{x_N} - NT_0(x_i - x_N) = (B_i - B_N), \quad i = 1, 2, ..., N - 1,
$$

 \blacktriangleright Finding the phases of the system involves:

- \blacktriangleright Solving the above conditions
- \triangleright Establishing the local and global stability of the solutions
- ▶ Finding phase transition lines between phases (solutions)

Vanishing magnetic fields

The x_i are $N-1$ order parameters; satisfy the common equation

$$
T \ln x - NT_0 x = \lambda .
$$

$$
\blacktriangleright x_i = x_- \text{ or } x_i = x_+
$$

- \blacktriangleright $x_i = 1/N$ (for all *i*) is always a solution. If stable, paramagnetic phase with unbroken $SU(N)$
- ▶ In general M solutions at x_+ and $N M$ at x_- . If stable, ferromagnetic phase: $SU(N) \rightarrow SU(M) \times SU(N-M) \times U(1)$, M-rows YT.

Stability

Stability analysis reveals that the only possible stable states are

 $\blacktriangleright M = 0$ (SU(N)-singlet, paramagnetic)

 $M = 1$ (fully symmetric irrep, ferromagnetic). Both are captured by the single order parameter x

$$
x_1 = \frac{1+x}{N}
$$
, $x_i = \frac{1-x/(N-1)}{N}$, $i = 2,...,N$,

satisfying

(*)
$$
T \ln \frac{1+x}{1-x/(N-1)} - T_0 \frac{N}{N-1} x = 0
$$
.

- ▶ One-row YT with length $\ell_1 = \frac{x}{N-1}n + \mathcal{O}(1)$.
- ▶ Critical temperatures: where stable solutions appear or disappear also satisfy

$$
(**) \qquad \boxed{T_c = T_0(1+x)(1-x/(N-1))}
$$

.

Critical T^c and x^c solve the transcendental system (*) & (**).

Already two critical temperatures T_0 and $T_c > T_0$.

- ▶ For $T > T_c$: only solution is $x = 0$ (stable)
- ▶ For $T_0 < T < T_c$: $x = 0$ (stable) and $0 < x_1 < x_c < x_2$ (stable)

▶ For $T < T_0$: $x = 0$ (unstable) and $x_1 < 0 < x_2$ (stable)

Figure: Plot of the LHS of (*). **L:** $T < T_0$. **R:** $T_0 < T < T_c$ (blue) and for $T = T_c$ (yellow). \blacktriangleright Free energy comparison reveals a third critical temperature

$$
T_1 = \frac{T_0}{2} \frac{N(N-2)}{(N-1)\ln(N-1)}, \quad T_0 < T_1 < T_c \; .
$$

▶ We get the table for $N \ge 3$. Spontaneous magnetization, but not with a single Curie temperature

▶ For $N = 2$, $T_0 = T_1 = T_c$ \implies standard ferromagnetism.

Free energy, internal energy $[SU(N)]$ vs $SU(2)$]

▶ There is latent heat exchange in the transition between phases ▶ Hysteresis going up and down in temperature

Compare with ordinary $SU(2)$ ferromagnet: 2nd order phase transition.

Turning on magnetic fields: Linear response (small fields) Define the magnetizability matrix

$$
m_{ij}=\frac{\partial x_i}{\partial B_j}=m_{ji}
$$

Then

$$
\text{Paramagnetic phase}: \qquad m_{ij} = \frac{1}{N(T - T_0)} \bigg(\delta_{ij} - \frac{1}{N} \bigg)
$$

Ferromagnetic phase $x_1 \neq 0$, $T \sim T_c$

$$
m_{11} \simeq \frac{N-1}{N^2} \frac{Q}{\sqrt{T_c - T}} > 0 , \quad m_{1i} \simeq -\frac{1}{N^2} \frac{Q}{\sqrt{T_c - T}} < 0
$$

$$
m_{ij} \simeq \frac{1}{N^2(N-1)} \frac{Q}{\sqrt{T_c - T}} > 0 , \quad i, j = 2, ..., N ,
$$

where

$$
Q = \frac{T_c/T_0}{\sqrt{2x_c(2(N-1)x_c+N-2)T_0}}
$$

Turning on magnetic fields: Finite fields

This is the case with the richest phase structure

- ▶ Analysis becomes very complicated
- ▶ Broken and unbroken phases are hard to quantify
- \blacktriangleright Full phase diagram is needed to discern critical surfaces

Let's focus on only one component magnetic field B_1 .

- \triangleright Remarkably, if B_1 is large enough then the one-row solution becomes unstable.
- ▶ Then, two-row and conjugate one-row states are the stable ones. Hence

$$
SU(N) \to SU(N-2) \times U(1) \times U(1) \ .
$$

Figure: Thick lines represent phase transitions in the magnetization, the green line is a metastability frontier. Regions A, B are singly marnetized phases, C metastable mixtures of singly and doubly magnetized, and D a doubly magnetized phase. The gray dashed curve represents a crossover.

Double scaling limit

When both n, $N \gg 1$, then the subleading terms we have ignored become important. We think of the k_i as a continuous distribution.

To do that we reformulate the quantities as:

 \blacktriangleright We define a density

$$
\rho_s = \sum_{i=1}^N \delta_{s,k_i}.
$$

 \blacktriangleright This density ρ_s satisfies the relations

$$
\sum_{s=0}^{\infty} \rho_s = N , \qquad \sum_{s=0}^{\infty} s \rho_s = n + \frac{N(N-1)}{2} ,
$$

 \blacktriangleright Then, it can be shown that

$$
d_{n,\mathbf{k}} = n! \prod_{t>s=0}^{\infty} (t-s)^{(\rho_s-1)\rho_t}
$$

.

Analysis for very large temperatures

The Hamiltonian is irrelevant, since $e^{-\beta H}\to 1.$ Consider the entropy-like quantity (its logarithm)

$$
m_{w,n;k} = \left[\dim(\mathbf{k})\right]^{w-1} d_{n;\mathbf{k}} = \frac{n! \left[\Delta(\mathbf{k})\right]^w}{\left(\prod_{s=1}^{N-1} s! \right)^{w-1} \prod_{i=1}^N k_i!},
$$

The constant w parametrizes different cases physically and mathematically:

- \triangleright $w = 1$: # of reps from decomposing *n* fundamentals.
- \triangleright $w = 2$: # of states from decomposing *n* fundamentals.
- \blacktriangleright $w > 1$: Exotic situations; no clear physical meaning.
- \triangleright $w < 1$: Unphysical, as entropy decreases with dimensionality.

Calling $\rho(k)$ the continuous version of ρ_s :

 \blacktriangleright Extremize the functional

$$
S_{w,n}[\rho(k)] = \frac{w}{2} \int_0^{\infty} dk \int_0^{\infty} dk' \rho(k) \rho(k') \ln |k - k'| - \int_0^{\infty} dk \rho(k) k(\ln k - 1)
$$

 \blacktriangleright This is subject to the constraints

$$
\int_0^\infty dk \, \rho(k) = N \;, \qquad \int_0^\infty dk \, k \, \rho(k) = n + \frac{N^2}{2} \; .
$$

Setting the functional derivative w.r.t. $\rho(k)$ to zero and further differentiating with respect to k we obtain

$$
w \int_0^\infty dk' \frac{\rho(k')}{k - k'} = \ln k + \lambda ,
$$

becomes a standard single-cut Cauchy problem. To solve it we define a resolvent etc... We will skip the details.

Solution of the Cauchy problem

It turns out that the solution has two phases depending on the parameter

$$
n_w = \frac{(3w-2)N^2}{4}
$$

.

Then

 \triangleright Dilute phase $n > n_w$: The density is

$$
\rho(k) = \frac{2}{w\pi} \cos^{-1} \frac{\sqrt{k} + \sqrt{ab/k}}{\sqrt{a} + \sqrt{b}} , \qquad a \leq k \leq b ,
$$

where a and b depend on n , N and w .

▶ Condensed phase $n < n_w$: The density is

$$
\rho(k) = \begin{cases} 1, & 0 < k < a, \\ \rho_0(k-a), & a < k < a+b, \end{cases}
$$

with

$$
\rho_0(k) = \frac{2}{w\pi} \cos^{-1} \sqrt{\frac{k}{b}} + \frac{2(w-1)}{w\pi} \cos^{-1} \sqrt{\frac{(a+b)k}{(a+k)b}}
$$

.

Figure: The distribution $\rho(k)$ for various values of n/N^2 . For $n=0$ (first panel) the distribution is a step function corresponding to the singlet. For $0 < n < N^2/4$ (second panel) the edge of the distribution deforms into an inverse cosine. For $n=N^2/4$ (third panel) the deformation reaches $k = 0$, signaling a phase transition. As soon as n exceeds $N^2/4$ (fourth panel) the left edge of the distribution drops to $\rho(0) = 0$, and as n increases (fifth panel) $\rho(x)$ has support on a positive interval. For $n \gg N^2/4$ (sixth panel) it approaches a Wigner semicircle distribution.

Phase transitions

Consider the entropy functional $S_{w,n}[\rho(k)]$ calculated for the above two solutions. As a function of n we found that $[Poly-KS]$:

- Example 1 Between the two phases it is continuous across $n = n_w$.
- \blacktriangleright However, higher derivatives w.r.t. *n* are not, signaling a phase transition.

▶ Summary of phase transitions for various values of $w \ge 1$

Concluding remarks

 $SU(N)$ ferromagnets display new features:

- ▶ Various novel phase transitions
- \blacktriangleright Metastable phases
- ▶ Hysteresis in temperature and magnetic field
- ▶ Spontaneous breaking $SU(N) \rightarrow SU(N-1) \times U(1)$
- \triangleright With M magnetic field components, $SU(N) \to SU(N-M-1) \times U(1)^{M+1}$ (generically)
- **► Admit large-N limit,** $N \sim \sqrt{ }$ \overline{n} (shown at very large \overline{T})

Future directions:

- \blacktriangleright Higher representations of $SU(N)$. In particular compose: \Box , \Box and $\cdot \Box$
- Anisotropic couplings h_{ab} , further modified symmetry
- ▶ Higher Casimirs, 3-body and higher interactions
- ► Large-N limit $N \sim \sqrt{ }$ \overline{n} , new phases (for finite T)

EYXAPIΣTΩ