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General settings and context — Motivation

Symmetries in physics

Discrete (permutation, lattice) or continuous (rotations,
translations, internal)

SU(N) is a continuous symmetry arising in many systems.
> Spin SU(2)
> lsospin SU(2)
» Flavor SU(3)
» Color SU(3)
» Grand Unified Theories SU(5),...

Any quantum situation invariant under change among N states.
Defining representation: N x N unitary matrices.



General motivation | - Some basic math/phys questions

» The total spin of 3 spin-1/2 particles could be either 1/2 or
3/2 with multiplicities 2 and 1, i.e.

202Q2=202¢04
» Tensor product of n spin-1/2 reps of SU(2): What is the
multiplicity dj, j 1/, of the spin-j rep. in the decomposition?

202Q2® - ®2=Y d,i10®(2j+1).
j

n spin 1/2

» What about n spin-s reps of SU(2)? What is then d), js?

(25+1) @25 +1)®- @ (25+1) = Y dnjs ® (2 +1)

n spin s

Relation to random walks [Polychronakos-KS 16]



Similar questions for SU(N). What is the multiplicity of a
general Young Tableau (YT) arising in the decomposition of n
fundamentals? Schematically:

D@Dc@"-@D:Zdn,k | ‘

n boxes

In there anything interesting happening for large n and/or N:
> If N=0O(1) and n>> 17

» If N,n> 1 with some ratio kept constant?



General motivation Il - Physics applications

» SU(N)-matrix models:

» To describe non-perturbative aspects in string theory
[Gross-Migdal 90, Douglas-Shenker 90]

> Aspects of black hole Physics (thermalization, information
"paradox" etc) [Kazakov-Kostov-Kutasov 01]

» Large N-expansion of SU(N) gauge theories:

» Led to a new understanding of the perturbative expansion by
reorganizing Feynman diagrams in a topological expansion
['t Hooft 74]

» Eventually to the AdS/CFT correspondence, a breakthrough in
our understanding of QFT and Gravity [Maldacena 97]

» Magnetic systems with SU(N) symmetry in the context of
ultracold atoms, spin chains and of interacting atoms on
lattice cites and in the presence of magnetic fields.

» Phase transitions for large n and/or N.



QOutline

» The SU(N) ferromagnetic model:
Construction, silent simplifications and essential properties.

» Solution in the thermodynamic limit and finite V.
Stability and Young tableaux.
Spontaneous symmetry breaking.

» Phase transitions:

> SU(2): A single Marie Curie temperature below which
spontaneously magnetized occurs; a 2nd order phase transition.

» SU(N), with N = 3,4,...: More structure and critical
temperatures...stable as well unstable phases. Phase
transitions are different.

» Turning on magnetic fields.
» Large n, N with N/ n? fixed. Novel phase structure.

» Concluding remarks.



The SU(N) ferromagnet

Consider n atoms on a lattice with two-body interactions.
» Each atom has N degenerate states |s), s =1,2,..., N.
» The generic two-body interaction is
N
/ /
Hi2 = )3 hsy 5251} |s1) (s1] ®s2) (s3]

s1,51,52,55=1

» Define j,,a=0,1,..., N> — 1, the generators of U(N) in the
fundamental N-dim rep. (jo is the U(1) part). The j,'s form a
complete basis for the operators on an N-dim space. Hence,

N2—1
Hio =Y hapjradob . hab =y,
a,b=0
where
jl,a:.ja®]1x j2,a:]1®ja ,

are fundamental U(N) operators on states of atoms 1 and 2.



Assume invariance under change of basis |s):

» Interactions will essentially be the operators exchanging the
states of the atoms of the form (up to a constant)

N2-1
Hio=c12 Y ji,aj2.a
a=1

» SU(N) emerges from invariance under general changes of
basis.

» The full Hamiltonian will be of the form

n N2-1
H= 2 Cr,s 2 Jrals,a
r,s=1 a=1

where ¢, s coupling between atoms r and s.

» Further symmetries and more:
» Translation invariance: ¢,z = ¢y_g and ¢ =0
» Ferromagnetic: ¢ < 0



Mean field approximation

» Interactions are assumed reasonably long range.
» Average of neighbors approximated with the full lattice average

1 n
chjr+s,a = (Z Cs) - st,a = _EJa '
S n s=1 n

S

where the total SU(N) generators and average coupling is

n
Ja:ZJ's,av C:—ZC5>0.
s=1 s

» Then, the full Hamiltonian becomes [Polychronakos-KS 23]

c — n ” - CN271 )
- ; ( S;JS,Q) = ;;;1 J5 + const.
— *%CQ(J) ,

where G,(J) is the quadratic Casimir.



Turning on magnetic fields
We may consider a global external field contributing one-body terms

N-1
Hg = — ) BiH;
i=1

where H; are commuting Cartan generators.

Therefore the total Hamiltonian is [Poly-KS 23]

c N-—-1
H:H/—l—HB:—;CQ(J)— ZB,'H,' .
i=1




Crash course on SU(N) representation theory

» Irreps of SU(N) are labeled by a set of distinct ordered
integers {k;}
ki > ko> >ky=0.

The usual Young tableaux (YT)

L],

is labeled by /;: the # of boxes in the /th row
bi=ki—ky+i—N, 120> ---20y_12>20.

» The k;-representation is redundant since we may shift
ki — ki + c. This is the U(1) charge.
We fix the redundancy by

NN-1)

Zk—n—i— 5



Basic examples:
» The singlet representation (n = 0):

li=0 or ki=N-—j, Vi=12...N.

» The fundamental representation (n = 1):

{1 =1 or ki =N, therestasin singlet

» The symmetric representation (n = 2):

{1 =2 or k =N+1, therestas in singlet

» The antisymmetric representation (n = 2):

by =40y=1 or ki =N, kn=N-—-1, therestas in singlet



The multiplicity

What is the multiplicity d, x of each irrep k arising in the

decomposition of n fundamentals of SU(N)?

Recall that, schematically:

[

el le. .ol ]= ):dnk

n boxes

The result is [Poly-KS 23]

N

j>i=1

dnk = OgtthniN(N—1)2 | ] (Si—

Si)Dnx

where
n!

T, k!
and where S; acts by replacing k; by k; — 1.

Dn,k



A closed expression can be also obtained.

Ak N N(N —1
dn;k:n! N() s Zk,:n+<7)
[Ti=1 ki! i-1 2
» where the Vandermonde determinant is
N
Alk) = TT (ki—kj).
j>i=1

» The dimension of the irrep is

tr 1 = dim(k) = IA—II ki = K Adk)

-_ . - N_l
jsim1 40 TIog st

» The quadratic Casimir is

1 N
c@ (k) = 5 Y k? + const. .
i=1



For SU(2): We have one-row reps.
li=k—k—1=2j, j=0,

» Then the multiplicity of the j-spin rep arising form the
decomposition of n spin-5 reps is
nt(2j+1)
)i+

» The dimension of the irrep is ky — ko = 2j + 1.

dnj1/2 = 3

» As a check the following identity holds
n/2
Y. (2 +1)dy;=2",

J=Jmin

where jmin equals 0 or 1/2 if nis even or odd.



Statistical mechanics of the SU(N) ferromagnet

The partition function
At temperature T = B! this is defined as

pe "
Z=) e Z‘J’nkeT () try P T Bifh

states

where (k) denotes ordered integers. Working out the details
[Poly-KS]

1 n! N K2+ BBsk
Z= Z§k1+ kN A7) A(z) H k! H j eZnZS TPBk
re :

where the Vandermonde determinant

N

AMz)= [] (z—=z), zj:eﬁBf.

i>i=1



Thermodynamic limit n > 1
The rank of the group N = O(1).
» A typical k; is of order n, also the exponent in e Ls k2 +BBsks

» Any prefactor polynomial in n is irrelevant, as is A(z), and
[-i(S - 5j_1) which produces subleading factors.

» Apply to k,! the Stirling approximation.

» |n addition,
k,-:nx,-, C:NT(),

introducing intensive quantities x; and a temperature scale Ty.
» Altogether we obtain

7 = Z5X1+...+XN,1e*”ﬁF(")*O(”O) ,
X

where the free energy of the system is

NT,
NTo 2

™=

F(x) = (Tx,- In x; — - B,-x,-)

1



Equilibrium
Introduce a Lagrange multiplier A for the condition }; x; = 1 and
perform a saddle point analysis:

» The saddle point conditions are

E),-F/\: T|nX,'—NTOX,'—B,'—)\:0,
Y xi=1 i=12..., N .
i

» Eliminating A

Thh Xl — NTo(x —xn) = (B — By), i=1,2,....N—1,
XN
» Finding the phases of the system involves:
» Solving the above conditions
» Establishing the local and global stability of the solutions
» Finding phase transition lines between phases (solutions)



Vanishing magnetic fields
The x; are N — 1 order parameters; satisfy the common equation

Tinx—NTgx = A .

' Tinx-NTyx
H
'
N A
' '
! '
H '
H '
' '
' '
; - .
/ Xﬁ ’ : \

P Xj = Xx_ or Xj = X4

» x; = 1/N (for all i) is always a solution. If stable,
paramagnetic phase with unbroken SU(N)
» In general M solutions at x; and N — M at x_.

If stable, ferromagnetic phase:
SU(N) — SU(M) x SU(N — M) x U(1), M-rows YT.



Stability

Stability analysis reveals that the only possible stable states are
» M =0 (SU(N)-singlet, paramagnetic)
» M =1 (fully symmetric irrep, ferromagnetic).

Both are captured by the single order parameter x

14x 1—x/(N-1)
1=y X;:#,/:Z...,N,
satisfying
1+ x N
Tl — T =0
(*) "T—x/(IN-1) °n-1~

» One-row YT with length /1 = z*5n+ O(1).

» Critical temperatures: where stable solutions appear or
disappear also satisfy

(%) Te=To(1+x)(1—x/(N—1))




Already two critical temperatures Tg and T, > Tp.

» For T > T.: only solution is x = 0 (stable)

» For To < T < T x =0 (stable) and 0 < x1 < xc < x2
(stable)

» For T < Tp: x =0 (unstable) and x; < 0 < x (stable)
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Figure: Plot of the LHS of (*).
L: T< Tp. Rt To < T < T (blue) and for T = T, (yellow).



» Free energy comparison reveals a third critical temperature

T =

_To  NN-2)

2 (N=1)In(N —

1)’

T0<T1<Tc.

» We get the table for V > 3. Spontaneous magnetization , but
not with a single Curie temperature

[state [ T<To | To<T<Th |Th<T<T.| T.<T
singlet | unstable metastable stable stable
1- row | stable stable metastable not a solution

>FOFN:2,T0:T1:TC —

standard ferromagnetism.

’ state \ T<T0\

T>Ty

|

singlet | unstable

stable

1-row stable

not a solution




Free energy, internal energy [SU(N) vs SU(2)]
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» There is latent heat exchange in the transition between phases

» Hysteresis going up and down in temperature

Compare with ordinary SU(2) ferromagnet: 2nd order phase transition.
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Turning on magnetic fields: Linear response (small fields)
Define the magnetizability matrix

aX,'
M= 5 T
Then
Paramagnetic phase : m-~—¥ (5--—l
gnetic phase ITNT T "N
Ferromagnetic phase x; 20, T ~ T,
N-—-1 Q 1 Q
mi>~ ———>0, m>——F —<0
R RV e VTN JTooT
1
mjj ~ Q >0, i,j=2,....,N,

N2(N=1) VT, T
where
T/ To

Q=
V2xc(2(N = 1)xc + N —2) T




Turning on magnetic fields: Finite fields

This is the case with the richest phase structure
» Analysis becomes very complicated
» Broken and unbroken phases are hard to quantify
» Full phase diagram is needed to discern critical surfaces

Let's focus on only one component magnetic field Bj.
» Remarkably, if By is large enough then the one-row solution

becomes unstable.
» Then, two-row and conjugate one-row states are the stable
ones. Hence

SU(N) = SU(N—-2) x U(1) x U(1) .



Co

Figure: Thick lines represent phase transitions in the magnetization, the
green line is a metastability frontier. Regions A, B are singly marnetized
phases, C metastable mixtures of singly and doubly magnetized, and D a
doubly magnetized phase. The gray dashed curve represents a crossover.



Double scaling limit

When both n, N > 1, then the subleading terms we have ignored
become important. We think of the k; as a continuous distribution.

To do that we reformulate the quantities as:
» We define a density

N
Ps = Z Os,k; -
i=1
» This density ps satisfies the relations
ad > N(N —1
Toomn.  Tspemns MU0
s=0 s=0

» Then, it can be shown that

o)

doe =0l T (t—s)les= Ve

t>s=0



Analysis for very large temperatures

The Hamiltonian is irrelevant, since e PH — 1.
Consider the entropy-like quantity (its logarithm)

My ke = [dim(k)] " dp = N—rlﬂ [Af,k)l] N
( s!) k!
i=1

=1

[

The constant w parametrizes different cases physically and
mathematically:

» w = 1: # of reps from decomposing n fundamentals.
» w = 2: # of states from decomposing n fundamentals.
» w > 1: Exotic situations; no clear physical meaning.

» w < 1: Unphysical, as entropy decreases with dimensionality.



Calling p(k) the continuous version of ps:
» Extremize the functional

Sw.nlo 2/ dk/ dk' p(K)p(K') In |k — K|
—/O dk p(K) k(Ink — 1)

» This is subject to the constraints

o) IS N2
dko(k) = N, /dkk K =nt o
| ake(k) [ dkkp(i) = n+ 5

» Setting the functional derivative w.r.t. p(k) to zero and
further differentiating with respect to k we obtain

/dk’lf 2 = Ink+A,

becomes a standard single-cut Cauchy problem. To solve it we
define a resolvent etc... We will skip the details.



Solution of the Cauchy problem

It turns out that the solution has two phases depending on the
parameter

(3w —2)N?
—_—

ny =
Then
» Dilute phase n > n,: The density is

p(k):i 1 Vk ++/ab/k

<k<Kb

Wit Vat+vb

where a and b depend on n, N and w.

» Condensed phase n < n,,: The density is
. 1, O<k<a,
p(k>_{po(k—a), a<k<a+b,
with
po(k) = — cos™? k 2w-1) cos ™1 (a+ b)k
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Figure: The distribution p(k) for various values of n/N?. For n = 0 (first
panel) the distribution is a step function corresponding to the singlet. For
0 < n < N?/4 (second panel) the edge of the distribution deforms into
an inverse cosine. For n = N?/4 (third panel) the deformation reaches

k = 0, signaling a phase transition. As soon as n exceeds N2 /4 (fourth
panel) the left edge of the distribution drops to p(0) = 0, and as n
increases (fifth panel) p(x) has support on a positive interval. For

n > N2/4 (sixth panel) it approaches a Wigner semicircle distribution.



Phase transitions

Consider the entropy functional Sy, ,[o(k)] calculated for the above
two solutions.
As a function of n we found that [Poly-KS]:

» Between the two phases it is continuous across n = n,,.

» However, higher derivatives w.r.t. n are not, signaling a phase
transition.

» Summary of phase transitions for various values of w > 1

’ transition ‘ 3rd order ‘ 4th order ‘ no transition ‘
w=1 v
w > 1(w # 2) | (crossover) v
w=2 v




Concluding remarks

SU(N) ferromagnets display new features:

| 2

vvyyy

>

Various novel phase transitions

Metastable phases

Hysteresis in temperature and magnetic field
Spontaneous breaking SU(N) — SU(N — 1) x U(1)
With M magnetic field components,

SU(N) — SU(N — M — 1) x U(1)M+1 (generically)
Admit large-N limit, N ~ y/n (shown at very large T)

Future directions:

>

4
4
>

Higher representations of SU(N);

In particular compose: [ 1] H and [+] |

Anisotropic couplings h,p, further modified symmetry
Higher Casimirs, 3-body and higher interactions
Large-N limit N ~ /n, new phases (for finite T)
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