Non-Abelian ferromagnets

Konstantinos Sfetsos National and Kapodistrian University of Athens

University of Cyprus, 24 May 2024

Based on work with A.P. Polychronakos (City Coll., N.Y.)

- Nucl.Phys. B994 (2023) 116314, 2305.19345 [hep-th]
- Nucl.Phys. B996 (2023) 116353, 2306.01051 [hep-th]
- Nucl.Phys. B999 (2024) 116434, 2310.16887 [hep-th]
- and in progress.

General settings and context - Motivation

Symmetries in physics

Discrete (permutation, lattice) or continuous (rotations, translations, internal)

SU(N) is a continuous symmetry arising in many systems.

- ► Spin *SU*(2)
- ► Isospin *SU*(2)
- ► Flavor *SU*(3)
- Color SU(3)
- ► Grand Unified Theories *SU*(5),...

Any quantum situation invariant under change among N states. Defining representation: $N \times N$ unitary matrices.

General motivation I - Some basic math/phys questions

The total spin of 3 spin-1/2 particles could be either 1/2 or 3/2 with multiplicities 2 and 1, i.e.

$$2\otimes 2\otimes 2=2\oplus 2\oplus 4$$

Tensor product of *n* spin-1/2 reps of SU(2): What is the multiplicity d_{n,i,1/2} of the spin-*j* rep. in the decomposition?

$$\underbrace{2 \otimes 2 \otimes 2 \otimes \cdots \otimes 2}_{n \text{ spin } 1/2} = \sum_{j} d_{n,j,1/2} \oplus (2j+1) .$$

► What about *n* spin-*s* reps of SU(2)? What is then $d_{n,j,s}$? $\underbrace{(2s+1) \otimes (2s+1) \otimes \cdots \otimes (2s+1)}_{n \text{ spin } s} = \sum_{j} d_{n,j,s} \oplus (2j+1)$

Relation to random walks [Polychronakos-KS 16]

Similar questions for SU(N). What is the multiplicity of a general Young Tableau (YT) arising in the decomposition of n fundamentals? Schematically:

In there anything interesting happening for large n and/or N:

• If
$$N = \mathcal{O}(1)$$
 and $n \gg 1$?

• If N, $n \gg 1$ with some ratio kept constant?

General motivation II - Physics applications

- ► *SU*(*N*)-matrix models:
 - To describe non-perturbative aspects in string theory [Gross-Migdal 90, Douglas-Shenker 90]
 - Aspects of black hole Physics (thermalization, information "paradox" etc) [Kazakov-Kostov-Kutasov 01]
- Large N-expansion of SU(N) gauge theories:
 - Led to a new understanding of the perturbative expansion by reorganizing Feynman diagrams in a topological expansion ['t Hooft 74]
 - Eventually to the AdS/CFT correspondence, a breakthrough in our understanding of QFT and Gravity [Maldacena 97]
- Magnetic systems with SU(N) symmetry in the context of ultracold atoms, spin chains and of interacting atoms on lattice cites and in the presence of magnetic fields.
- Phase transitions for large n and/or N.

Outline

The SU(N) ferromagnetic model: Construction, silent simplifications and essential properties.

 Solution in the thermodynamic limit and finite N. Stability and Young tableaux.
 Spontaneous symmetry breaking.

Phase transitions:

- SU(2): A single Marie Curie temperature below which spontaneously magnetized occurs; a 2nd order phase transition.
- SU(N), with N = 3, 4, ...: More structure and critical temperatures...stable as well unstable phases. Phase transitions are different.
- Turning on magnetic fields.
- **Large** n, N with N/n^2 fixed. Novel phase structure.
- Concluding remarks.

The SU(N) ferromagnet

Consider n atoms on a lattice with two-body interactions.

- Each atom has N degenerate states $|s\rangle$, s = 1, 2, ..., N.
- The generic two-body interaction is

$$H_{12} = \sum_{s_1, s_1', s_2, s_2' = 1}^{N} h_{s_1 s_2; s_1' s_2'} |s_1\rangle \langle s_1'| \otimes |s_2\rangle \langle s_2'|$$

▶ Define j_a, a = 0, 1, ..., N² − 1, the generators of U(N) in the fundamental N-dim rep. (j₀ is the U(1) part). The j_a's form a complete basis for the operators on an N-dim space. Hence,

$$H_{12} = \sum_{a,b=0}^{N^2-1} h_{ab} j_{1,a} j_{2,b}$$
 , $h_{ab} = h^*_{ab}$,

where

$$j_{1,a}=j_a\otimes \mathbb{I}$$
 , $j_{2,a}=\mathbb{I}\otimes j_a$,

are fundamental U(N) operators on states of atoms 1 and 2.

Assume invariance under change of basis $|s\rangle$:

Interactions will essentially be the operators exchanging the states of the atoms of the form (up to a constant)

$$H_{12} = c_{12} \sum_{a=1}^{N^2 - 1} j_{1,a} j_{2,a}$$

- SU(N) emerges from invariance under general changes of basis.
- The full Hamiltonian will be of the form

$$H = \sum_{r,s=1}^{n} c_{r,s} \sum_{a=1}^{N^2-1} j_{r,a} j_{s,a}$$
 ,

where $c_{r,s}$ coupling between atoms r and s.

- Further symmetries and more:
 - Translation invariance: $c_{r,\vec{s}} = c_{\vec{r}-s}$ and $c_0 = 0$
 - ► Ferromagnetic: *c*_r < 0

Mean field approximation

- Interactions are assumed reasonably long range.
- Average of neighbors approximated with the full lattice average

$$\sum_{s} c_{s} j_{r+s,a} \simeq \left(\sum_{s} c_{s}\right) \frac{1}{n} \sum_{s=1}^{n} j_{s,a} = -\frac{c}{n} J_{a} ,$$

where the total SU(N) generators and average coupling is

$$J_{a} = \sum_{s=1}^{n} j_{s,a}$$
 , $c = -\sum_{s} c_{s} > 0$.

Then, the full Hamiltonian becomes [Polychronakos-KS 23]

$$\begin{split} H &= -\frac{c}{n} \sum_{a=1}^{N^2 - 1} \left(J_a^2 - \sum_{s=1}^n j_{s,a}^2 \right) = -\frac{c}{n} \sum_{a=1}^{N^2 - 1} J_a^2 + \text{const.} \\ &= -\frac{c}{n} C_2(J) \end{split}$$

where $C_2(J)$ is the quadratic Casimir.

Turning on magnetic fields

We may consider a global external field contributing one-body terms

$$H_B = -\sum_{i=1}^{N-1} B_i H_i$$

where H_i are commuting Cartan generators.

Therefore the total Hamiltonian is [Poly-KS 23]

$$H = H_I + H_B = -\frac{c}{n}C_2(J) - \sum_{i=1}^{N-1} B_i H_i$$

Crash course on SU(N) representation theory

Irreps of SU(N) are labeled by a set of distinct ordered integers {k_i}

$$k_1 > k_2 > \cdots > k_N \geqslant 0$$

The usual Young tableaux (YT)

is labeled by ℓ_i : the # of boxes in the *i*th row

$$\ell_i = k_i - k_N + i - N$$
, $\ell_1 \ge \ell_2 \ge \cdots \ge \ell_{N-1} \ge 0$.

► The k_i-representation is redundant since we may shift k_i → k_i + c. This is the U(1) charge. We fix the redundancy by

$$\sum_{i=1}^{N} k_i = n + \frac{N(N-1)}{2}$$

Basic examples:

• The singlet representation
$$(n = 0)$$
:
 $\ell_i = 0$ or $k_i = N - i$, $\forall i = 1, 2, ..., N$.

• The fundamental representation (n = 1):

 $\ell_1 = 1$ or $k_1 = N$, the rest as in singlet

• The symmetric representation (n = 2):

 $\ell_1 = 2$ or $k_1 = N + 1$, the rest as in singlet

• The antisymmetric representation (n = 2):

 $\ell_1 = \ell_2 = 1$ or $k_1 = N$, $k_2 = N - 1$, the rest as in singlet

The multiplicity

What is the multiplicity $d_{n,k}$ of each irrep k arising in the decomposition of *n* fundamentals of SU(N)?

Recall that, schematically:

The result is [Poly-KS 23]

$$d_{n,\mathbf{k}} = \delta_{k_1 + \dots + k_N, n+N(N-1)/2} \prod_{j>i=1}^N (S_i - S_j) D_{n,\mathbf{k}}$$
,

where

$$D_{n,\mathbf{k}}=rac{n!}{\prod_{r=1}^N k_r!}$$
 ,

and where S_i acts by replacing k_i by $k_i - 1$.

A closed expression can be also obtained.

$$d_{n;\mathbf{k}} = n! \, \frac{\Delta(\mathbf{k})}{\prod_{i=1}^{N} k_i!} \,, \qquad \sum_{i=1}^{N} k_i = n + \frac{N(N-1)}{2} \,.$$

where the Vandermonde determinant is

$$\Delta(\mathbf{k}) = \prod_{j>i=1}^{N} (k_i - k_j) \, .$$

The dimension of the irrep is

$$tr_{k} 1 = dim(k) = \prod_{j>i=1}^{N} \frac{k_{i} - k_{j}}{j - i} = \frac{\Delta(k)}{\prod_{s=1}^{N-1} s!},$$

The quadratic Casimir is

$$C^{(2)}(\mathbf{k}) = \frac{1}{2} \sum_{i=1}^{N} k_i^2 + \text{const.}$$

For SU(2): We have one-row reps.

$$\ell_1 = k_1 - k_2 - 1 = 2j$$
, $j = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$.

Then the multiplicity of the *j*-spin rep arising form the decomposition of *n* spin-¹/₂ reps is

$$d_{n,j,1/2} = \frac{n! (2j+1)}{\binom{n}{2} - j! (\frac{n}{2} + j + 1)!},$$

- The dimension of the irrep is $k_1 k_2 = 2j + 1$.
- As a check the following identity holds

$$\sum_{j=j_{\min}}^{n/2} (2j+1) d_{n,j} = 2^n$$
 ,

where j_{\min} equals 0 or 1/2 if *n* is even or odd.

Statistical mechanics of the SU(N) ferromagnet

The partition function At temperature $T = \beta^{-1}$ this is defined as

$$Z = \sum_{\text{states}} e^{-\beta H} = \sum_{\langle \mathbf{k} \rangle} d_{n;\mathbf{k}} e^{\frac{\beta c}{n} C^{(2)}(\mathbf{k})} \operatorname{tr}_{\mathbf{k}} e^{\beta \sum_{j=1}^{N} B_{j} H_{j}} ,$$

where $\langle {\bf k} \rangle$ denotes ordered integers. Working out the details [Poly-KS]

$$Z = \sum_{\mathbf{k}} \delta_{k_1 + \dots + k_N, n} \frac{1}{\Delta(\mathbf{z})} \frac{n!}{\prod_{r=1}^N k_r!} \prod_{j>i=1}^N (S_j^{-1} - S_j^{-1}) e^{\frac{\beta c}{2n} \sum_s k_s^2 + \beta B_s k_s}$$

where the Vandermonde determinant

$$\Delta(\mathbf{z}) = \prod_{j>i=1}^N (z_j-z_i)$$
 , $z_j = e^{eta B_j}$.

Thermodynamic limit $n \gg 1$

The rank of the group N = O(1).

- A typical k_i is of order *n*, also the exponent in $e^{\frac{\beta c}{2n}\sum_s k_s^2 + \beta B_s k_s}$
- Any prefactor polynomial in *n* is irrelevant, as is $\Delta(z)$, and $\prod_{j>i} (S_i^{-1} S_j^{-1})$ which produces subleading factors.
- Apply to $k_r!$ the Stirling approximation.

In addition,

$$k_i = n x_i$$
 , $c = N T_0$,

introducing intensive quantities x_i and a temperature scale T_0 .

Altogether we obtain

$$Z = \sum_{\mathbf{x}} \delta_{x_1 + \dots + x_N, 1} e^{-n\beta \operatorname{F}(\mathbf{x}) + \mathcal{O}(n^0)} ,$$

where the free energy of the system is

$$F(\mathbf{x}) = \sum_{i=1}^{N} \left(Tx_i \ln x_i - \frac{NT_0}{2} x_i^2 - B_i x_i \right)$$

Equilibrium

Introduce a Lagrange multiplier λ for the condition $\sum_{i} x_i = 1$ and perform a saddle point analysis:

The saddle point conditions are

$$\partial_i F_\lambda = T \ln x_i - NT_0 x_i - B_i - \lambda = 0$$
,
 $\sum_i x_i = 1, \quad i = 1, 2, \dots, N$.

Eliminating λ

$$T \ln \frac{x_i}{x_N} - NT_0(x_i - x_N) = (B_i - B_N), \quad i = 1, 2, \dots, N-1$$

Finding the phases of the system involves:

- Solving the above conditions
- Establishing the local and global stability of the solutions
- Finding phase transition lines between phases (solutions)

Vanishing magnetic fields

The x_i are N-1 order parameters; satisfy the common equation

$$T\ln x - NT_0 x = \lambda$$
.

▶
$$x_i = x_-$$
 or $x_i = x_+$

- x_i = 1/N (for all i) is always a solution. If stable, paramagnetic phase with unbroken SU(N)
- ▶ In general *M* solutions at x_+ and N M at x_- . If stable, ferromagnetic phase: $SU(N) \rightarrow SU(M) \times SU(N - M) \times U(1)$, *M*-rows YT.

Stability

Stability analysis reveals that the only possible stable states are

• M = 0 (SU(N)-singlet, paramagnetic)

• M = 1 (fully symmetric irrep, ferromagnetic).

Both are captured by the single order parameter x

$$x_1 = rac{1+x}{N}$$
, $x_i = rac{1-x/(N-1)}{N}$, $i = 2, \dots, N$,

satisfying

(*)
$$T \ln \frac{1+x}{1-x/(N-1)} - T_0 \frac{N}{N-1} x = 0$$

- One-row YT with length $\ell_1 = \frac{x}{N-1}n + \mathcal{O}(1)$.
- Critical temperatures: where stable solutions appear or disappear also satisfy

(**)
$$T_c = T_0(1+x)(1-x/(N-1))$$

Already two critical temperatures T_0 and $T_c > T_0$.

- For $T > T_c$: only solution is x = 0 (stable)
- For $T_0 < T < T_c$: x = 0 (stable) and $0 < x_1 < x_c < x_2$ (stable)

For $T < T_0$: x = 0 (unstable) and $x_1 < 0 < x_2$ (stable)

Figure: Plot of the LHS of (*). L: $T < T_0$. R: $T_0 < T < T_c$ (blue) and for $T = T_c$ (yellow). Free energy comparison reveals a third critical temperature

$$T_1 = \frac{T_0}{2} \frac{N(N-2)}{(N-1)\ln(N-1)}, \quad T_0 < T_1 < T_c$$

• We get the table for $N \ge 3$. Spontaneous magnetization , but not with a single Curie temperature

state	$T < T_0$	$T_0 < T < T_1$	$T_1 < T < T_c$	$T_c < T$
singlet	unstable	metastable	stable	stable
1- row	stable	stable	metastable	not a solution

For N = 2, $T_0 = T_1 = T_c \implies$ standard ferromagnetism.

state	$T < T_0$	$T > T_0$	
singlet	unstable	stable	
1-row	stable	not a solution	

Free energy, internal energy [SU(N) vs SU(2)]

There is latent heat exchange in the transition between phases
Hysteresis going up and down in temperature

Compare with ordinary SU(2) ferromagnet: 2nd order phase transition.

Turning on magnetic fields: Linear response (small fields) Define the magnetizability matrix

$$m_{ij} = \frac{\partial x_i}{\partial B_j} = m_{ji}$$

Then

Paramagnetic phase :
$$m_{ij} = \frac{1}{N(T - T_0)} \left(\delta_{ij} - \frac{1}{N} \right)$$

Ferromagnetic phase $x_1 \neq 0$, $T \sim T_c$

$$\begin{split} m_{11} &\simeq \frac{N-1}{N^2} \, \frac{Q}{\sqrt{T_c - T}} > 0 \ , \quad m_{1i} \simeq -\frac{1}{N^2} \, \frac{Q}{\sqrt{T_c - T}} < 0 \\ m_{ij} &\simeq \frac{1}{N^2(N-1)} \, \frac{Q}{\sqrt{T_c - T}} > 0 \ , \quad i, j = 2, \dots, N \ , \end{split}$$

where

$$Q = \frac{T_c / T_0}{\sqrt{2x_c(2(N-1)x_c + N - 2)T_0}}$$

Turning on magnetic fields: Finite fields

This is the case with the richest phase structure

- Analysis becomes very complicated
- Broken and unbroken phases are hard to quantify
- Full phase diagram is needed to discern critical surfaces
- Let's focus on only one component magnetic field B_1 .
 - Remarkably, if B₁ is large enough then the one-row solution becomes unstable.
 - Then, two-row and conjugate one-row states are the stable ones. Hence

$$SU(N) \rightarrow SU(N-2) \times U(1) \times U(1)$$
.

Figure: Thick lines represent phase transitions in the magnetization, the green line is a metastability frontier. Regions A, B are singly marnetized phases, C metastable mixtures of singly and doubly magnetized, and D a doubly magnetized phase. The gray dashed curve represents a crossover.

Double scaling limit

When both $n, N \gg 1$, then the subleading terms we have ignored become important. We think of the k_i as a continuous distribution.

To do that we reformulate the quantities as:

We define a density

$$\rho_s = \sum_{i=1}^N \delta_{s,k_i}$$

• This density ρ_s satisfies the relations

$$\sum_{s=0}^\infty
ho_s = N$$
 , $\sum_{s=0}^\infty s \,
ho_s = n + rac{N(N-1)}{2}$,

Then, it can be shown that

$$d_{n,\mathbf{k}} = n! \prod_{t>s=0}^{\infty} (t-s)^{(\rho_s-1)\rho_t}$$

Analysis for very large temperatures

The Hamiltonian is irrelevant, since $e^{-\beta H} \rightarrow 1$. Consider the entropy-like quantity (its logarithm)

$$m_{\mathbf{w},n;\mathbf{k}} = \left[\dim(\mathbf{k})\right]^{\mathbf{w}-1} d_{n;\mathbf{k}} = \frac{n! \left[\Delta(\mathbf{k})\right]^{\mathbf{w}}}{\left(\prod_{s=1}^{N-1} s!\right)^{\mathbf{w}-1} \prod_{i=1}^{N} k_i!} ,$$

The constant *w* parametrizes different cases physically and mathematically:

- w = 1: # of reps from decomposing *n* fundamentals.
- w = 2: # of states from decomposing *n* fundamentals.
- w > 1: Exotic situations; no clear physical meaning.
- \blacktriangleright w < 1: Unphysical, as entropy decreases with dimensionality.

Calling $\rho(k)$ the continuous version of ρ_s :

Extremize the functional

$$S_{w,n}[\rho(k)] = \frac{w}{2} \int_0^\infty dk \int_0^\infty dk' \rho(k)\rho(k') \ln|k-k'|$$
$$-\int_0^\infty dk \rho(k) k(\ln k - 1)$$

This is subject to the constraints

$$\int_0^\infty dk\,
ho(k)=N$$
 , $\int_0^\infty dk\,k\,
ho(k)=n+rac{N^2}{2}$.

Setting the functional derivative w.r.t. ρ(k) to zero and further differentiating with respect to k we obtain

$$w\int_0^\infty dk' rac{
ho(k')}{k-k'} = \ln k + \lambda$$
 ,

becomes a standard single-cut Cauchy problem. To solve it we define a resolvent etc... We will skip the details.

Solution of the Cauchy problem

It turns out that the solution has two phases depending on the parameter

$$n_w = \frac{(3w-2)N^2}{4}$$

Then

• Dilute phase $n > n_w$: The density is

$$ho(k) = rac{2}{w\pi} \cos^{-1} rac{\sqrt{k} + \sqrt{ab/k}}{\sqrt{a} + \sqrt{b}} \ , \qquad a \leqslant k \leqslant b \ ,$$

where a and b depend on n, N and w.

• Condensed phase $n < n_w$: The density is

$$ho(k) = \left\{ egin{array}{ccc} 1 \ , & 0 < k < a \ , \
ho_0(k-a) \ , & a < k < a+b \ , \end{array}
ight.$$

with

$$\rho_0(k) = \frac{2}{w\pi} \cos^{-1} \sqrt{\frac{k}{b}} + \frac{2(w-1)}{w\pi} \cos^{-1} \sqrt{\frac{(a+b)k}{(a+k)b}}$$

Figure: The distribution $\rho(k)$ for various values of n/N^2 . For n = 0 (first panel) the distribution is a step function corresponding to the singlet. For $0 < n < N^2/4$ (second panel) the edge of the distribution deforms into an inverse cosine. For $n = N^2/4$ (third panel) the deformation reaches k = 0, signaling a phase transition. As soon as n exceeds $N^2/4$ (fourth panel) the left edge of the distribution drops to $\rho(0) = 0$, and as n increases (fifth panel) $\rho(x)$ has support on a positive interval. For $n \gg N^2/4$ (sixth panel) it approaches a Wigner semicircle distribution.

Phase transitions

Consider the entropy functional $S_{w,n}[\rho(k)]$ calculated for the above two solutions.

As a function of n we found that [Poly-KS]:

- Between the two phases it is continuous across $n = n_w$.
- However, higher derivatives w.r.t. n are not, signaling a phase transition.

transition	3rd order	4th order	no transition
w = 1	\checkmark		
$w > 1 (w \neq 2)$	(crossover)	\checkmark	
<i>w</i> = 2			\checkmark

• Summary of phase transitions for various values of $w \ge 1$

Concluding remarks

SU(N) ferromagnets display new features:

- Various novel phase transitions
- Metastable phases
- Hysteresis in temperature and magnetic field
- ▶ Spontaneous breaking $SU(N) \rightarrow SU(N-1) \times U(1)$
- ▶ With *M* magnetic field components, $SU(N) \rightarrow SU(N - M - 1) \times U(1)^{M+1}$ (generically)
- Admit large-*N* limit, $N \sim \sqrt{n}$ (shown at very large *T*)

Future directions:

- ► Higher representations of SU(N); In particular compose: ____, ___ and ...
- Anisotropic couplings hab, further modified symmetry
- Higher Casimirs, 3-body and higher interactions
- Large-*N* limit $N \sim \sqrt{n}$, new phases (for finite *T*)

ΕΥΧΑΡΙΣΤΩ