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General settings and context – Motivation

Symmetries in physics

Discrete (permutation, lattice) or continuous (rotations,
translations, internal)

SU(N) is a continuous symmetry arising in many systems.
▶ Spin SU(2)
▶ Isospin SU(2)
▶ Flavor SU(3)
▶ Color SU(3)
▶ Grand Unified Theories SU(5),...

Any quantum situation invariant under change among N states.
Defining representation: N ×N unitary matrices.



General motivation I - Some basic math/phys questions

▶ The total spin of 3 spin-1/2 particles could be either 1/2 or
3/2 with multiplicities 2 and 1, i.e.

2⊗ 2⊗ 2 = 2⊕ 2⊕ 4

▶ Tensor product of n spin-1/2 reps of SU(2): What is the
multiplicity dn,j ,1/2 of the spin-j rep. in the decomposition?

2⊗ 2⊗ 2⊗ · · · ⊗ 2︸ ︷︷ ︸
n spin 1/2

= ∑
j

dn,j,1/2 ⊕ (2j + 1) .

▶ What about n spin-s reps of SU(2)? What is then dn,j ,s?

(2s + 1)⊗ (2s + 1)⊗ · · · ⊗ (2s + 1)︸ ︷︷ ︸
n spin s

= ∑
j

dn,j,s ⊕ (2j + 1)

Relation to random walks [Polychronakos-KS 16]



▶ Similar questions for SU(N). What is the multiplicity of a
general Young Tableau (YT) arising in the decomposition of n
fundamentals? Schematically:

⊗ ⊗ · · · ⊗︸ ︷︷ ︸
n boxes

= ∑
k
dn,k

▶ In there anything interesting happening for large n and/or N:

▶ If N = O(1) and n ≫ 1?

▶ If N, n ≫ 1 with some ratio kept constant?



General motivation II - Physics applications

▶ SU(N)-matrix models:
▶ To describe non-perturbative aspects in string theory

[Gross-Migdal 90, Douglas-Shenker 90]
▶ Aspects of black hole Physics (thermalization, information

"paradox" etc) [Kazakov-Kostov-Kutasov 01]

▶ Large N-expansion of SU(N) gauge theories:
▶ Led to a new understanding of the perturbative expansion by

reorganizing Feynman diagrams in a topological expansion
[’t Hooft 74]

▶ Eventually to the AdS/CFT correspondence, a breakthrough in
our understanding of QFT and Gravity [Maldacena 97]

▶ Magnetic systems with SU(N) symmetry in the context of
ultracold atoms, spin chains and of interacting atoms on
lattice cites and in the presence of magnetic fields.

▶ Phase transitions for large n and/or N.



Outline

▶ The SU(N) ferromagnetic model:
Construction, silent simplifications and essential properties.

▶ Solution in the thermodynamic limit and finite N.
Stability and Young tableaux.
Spontaneous symmetry breaking.

▶ Phase transitions:
▶ SU(2): A single Marie Curie temperature below which

spontaneously magnetized occurs; a 2nd order phase transition.
▶ SU(N), with N = 3, 4, . . . : More structure and critical

temperatures...stable as well unstable phases. Phase
transitions are different.

▶ Turning on magnetic fields.

▶ Large n,N with N/n2 fixed. Novel phase structure.

▶ Concluding remarks.



The SU(N) ferromagnet
Consider n atoms on a lattice with two-body interactions.
▶ Each atom has N degenerate states |s⟩, s = 1, 2, . . . ,N.
▶ The generic two-body interaction is

H12 =
N

∑
s1,s ′1,s2,s

′
2=1

hs1s2;s ′1s
′
2
|s1⟩ ⟨s ′1| ⊗ |s2⟩ ⟨s ′2|

▶ Define ja, a = 0, 1, ...,N2 − 1, the generators of U(N) in the
fundamental N-dim rep. (j0 is the U(1) part). The ja’s form a
complete basis for the operators on an N-dim space. Hence,

H12 =
N2−1

∑
a,b=0

hab j1,a j2,b , hab = h∗ab ,

where
j1,a = ja ⊗ I , j2,a = I ⊗ ja ,

are fundamental U(N) operators on states of atoms 1 and 2.



Assume invariance under change of basis |s⟩:
▶ Interactions will essentially be the operators exchanging the

states of the atoms of the form (up to a constant)

H12 = c12

N2−1

∑
a=1

j1,a j2,a

▶ SU(N) emerges from invariance under general changes of
basis.

▶ The full Hamiltonian will be of the form

H =
n

∑
r ,s=1

cr,s
N2−1

∑
a=1

jr ,a js,a ,

where cr,s coupling between atoms r and s.
▶ Further symmetries and more:

▶ Translation invariance: cr,⃗s = c⃗r−s and c0 = 0
▶ Ferromagnetic: cr < 0



Mean field approximation
▶ Interactions are assumed reasonably long range.
▶ Average of neighbors approximated with the full lattice average

∑
s
cs jr+s,a ≃

(
∑
s
cs
) 1
n

n

∑
s=1

js,a = − c

n
Ja ,

where the total SU(N) generators and average coupling is

Ja =
n

∑
s=1

js,a , c = −∑
s
cs > 0 .

▶ Then, the full Hamiltonian becomes [Polychronakos-KS 23]

H = − c

n

N2−1

∑
a=1

(
J2
a −

n

∑
s=1

j2s,a

)
= − c

n

N2−1

∑
a=1

J2
a + const.

= − c

n
C2(J) ,

where C2(J) is the quadratic Casimir.



Turning on magnetic fields
We may consider a global external field contributing one-body terms

HB = −
N−1

∑
i=1

BiHi

where Hi are commuting Cartan generators.

Therefore the total Hamiltonian is [Poly-KS 23]

H = HI +HB = − c

n
C2(J)−

N−1

∑
i=1

BiHi .



Crash course on SU(N) representation theory
▶ Irreps of SU(N) are labeled by a set of distinct ordered

integers {ki}
k1 > k2 > · · · > kN ⩾ 0 .

The usual Young tableaux (YT)

,

is labeled by ℓi : the # of boxes in the ith row

ℓi = ki − kN + i −N , ℓ1 ⩾ ℓ2 ⩾ · · · ⩾ ℓN−1 ⩾ 0 .

▶ The ki -representation is redundant since we may shift
ki → ki + c . This is the U(1) charge.
We fix the redundancy by

N

∑
i=1

ki = n+
N(N − 1)

2
.



Basic examples:

▶ The singlet representation (n = 0):

ℓi = 0 or ki = N − i , ∀ i = 1, 2, . . .N .

▶ The fundamental representation (n = 1):

ℓ1 = 1 or k1 = N , the rest as in singlet

▶ The symmetric representation (n = 2):

ℓ1 = 2 or k1 = N + 1 , the rest as in singlet

▶ The antisymmetric representation (n = 2):

ℓ1 = ℓ2 = 1 or k1 = N , k2 = N − 1 , the rest as in singlet



The multiplicity
What is the multiplicity dn,k of each irrep k arising in the
decomposition of n fundamentals of SU(N)?

Recall that, schematically:

⊗ ⊗ · · · ⊗︸ ︷︷ ︸
n boxes

= ∑
k
dn,k

The result is [Poly-KS 23]

dn,k = δk1+···+kN ,n+N(N−1)/2

N

∏
j>i=1

(Si − Sj )Dn,k ,

where
Dn,k =

n!

∏N
r=1 kr !

,

and where Si acts by replacing ki by ki − 1.



A closed expression can be also obtained.

dn;k = n!
∆(k)

∏N
i=1 ki !

,
N

∑
i=1

ki = n+
N(N − 1)

2
.

▶ where the Vandermonde determinant is

∆(k) =
N

∏
j>i=1

(ki − kj ) .

▶ The dimension of the irrep is

trk1 = dim(k) =
N

∏
j>i=1

ki − kj
j − i

=
∆(k)

∏N−1
s=1 s !

,

▶ The quadratic Casimir is

C (2)(k) =
1
2

N

∑
i=1

k2
i + const. .



For SU(2): We have one-row reps.

ℓ1 = k1 − k2 − 1 = 2j , j = 0,
1
2
, 1,

3
2
, . . . .

▶ Then the multiplicity of the j-spin rep arising form the
decomposition of n spin-1

2 reps is

dn,j,1/2 =
n! (2j + 1)(

n
2 − j

)
!
(
n
2 + j + 1

)
!
,

▶ The dimension of the irrep is k1 − k2 = 2j + 1.

▶ As a check the following identity holds

n/2

∑
j=jmin

(2j + 1)dn,j = 2n ,

where jmin equals 0 or 1/2 if n is even or odd.



Statistical mechanics of the SU(N) ferromagnet

The partition function
At temperature T = β−1 this is defined as

Z = ∑
states

e−βH = ∑
⟨k⟩

dn;k e
βc
n C (2)(k) trke

β ∑N
j=1 BjHj ,

where ⟨k⟩ denotes ordered integers. Working out the details
[Poly-KS]

Z = ∑
k

δk1+···+kN ,n
1

∆(z)
n!

∏N
r=1 kr !

N

∏
j>i=1

(
S−1
i − S−1

j

)
e

βc
2n ∑s k

2
s +βBsks .

where the Vandermonde determinant

∆(z) =
N

∏
j>i=1

(zj − zi ) , zj = eβBj .



Thermodynamic limit n ≫ 1
The rank of the group N = O(1).

▶ A typical ki is of order n, also the exponent in e
βc
2n ∑s k

2
s +βBsks

▶ Any prefactor polynomial in n is irrelevant, as is ∆(z), and
∏j>i (S

−1
i − S−1

j ) which produces subleading factors.
▶ Apply to kr ! the Stirling approximation.
▶ In addition,

ki = nxi , c = NT0 ,

introducing intensive quantities xi and a temperature scale T0.
▶ Altogether we obtain

Z = ∑
x

δx1+···+xN ,1e
−nβ F(x)+O(n0) ,

where the free energy of the system is

F (x) =
N

∑
i=1

(
Txi ln xi −

NT0
2

x2
i − Bixi

)



Equilibrium
Introduce a Lagrange multiplier λ for the condition ∑i xi = 1 and
perform a saddle point analysis:
▶ The saddle point conditions are

∂iFλ = T ln xi −NT0xi − Bi − λ = 0 ,

∑
i

xi = 1, i = 1, 2, . . . ,N .

▶ Eliminating λ

T ln
xi
xN

−NT0(xi − xN ) = (Bi − BN ) , i = 1, 2, . . . ,N − 1 ,

▶ Finding the phases of the system involves:
▶ Solving the above conditions
▶ Establishing the local and global stability of the solutions
▶ Finding phase transition lines between phases (solutions)



Vanishing magnetic fields
The xi are N − 1 order parameters; satisfy the common equation

T ln x −NT0x = λ .

x

T lnx-NT0 x

λ

x0x- x+

▶ xi = x− or xi = x+
▶ xi = 1/N (for all i) is always a solution. If stable,

paramagnetic phase with unbroken SU(N)

▶ In general M solutions at x+ and N −M at x−.
If stable, ferromagnetic phase:
SU(N) → SU(M)× SU(N −M)× U(1), M-rows YT.



Stability
Stability analysis reveals that the only possible stable states are
▶ M = 0 (SU(N)-singlet, paramagnetic)
▶ M = 1 (fully symmetric irrep, ferromagnetic).

Both are captured by the single order parameter x

x1 =
1+ x

N
, xi =

1− x/(N − 1)
N

, i = 2, . . . ,N ,

satisfying

(∗) T ln
1+ x

1− x/(N − 1)
− T0

N

N − 1
x = 0 .

▶ One-row YT with length ℓ1 = x
N−1n+O(1).

▶ Critical temperatures: where stable solutions appear or
disappear also satisfy

(∗∗) Tc = T0(1+ x)
(
1− x/(N − 1)

)
.

Critical Tc and xc solve the transcendental system (*) & (**).



Already two critical temperatures T0 and Tc > T0.

▶ For T > Tc : only solution is x = 0 (stable)

▶ For T0 < T < Tc : x = 0 (stable) and 0 < x1 < xc < x2
(stable)

▶ For T < T0: x = 0 (unstable) and x1 < 0 < x2 (stable)
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Figure: Plot of the LHS of (*).
L: T < T0. R: T0 < T < Tc (blue) and for T = Tc (yellow).



▶ Free energy comparison reveals a third critical temperature

T1 =
T0
2

N(N − 2)
(N − 1) ln(N − 1)

, T0 < T1 < Tc .

▶ We get the table for N ⩾ 3. Spontaneous magnetization , but
not with a single Curie temperature

state T < T0 T0 < T < T1 T1 < T < Tc Tc < T

singlet unstable metastable stable stable
1- row stable stable metastable not a solution

▶ For N = 2, T0 = T1 = Tc =⇒ standard ferromagnetism.

state T < T0 T > T0

singlet unstable stable
1-row stable not a solution



Free energy, internal energy [SU(N) vs SU(2)]
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▶ There is latent heat exchange in the transition between phases
▶ Hysteresis going up and down in temperature

Compare with ordinary SU(2) ferromagnet: 2nd order phase transition.
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Turning on magnetic fields: Linear response (small fields)
Define the magnetizability matrix

mij =
∂xi
∂Bj

= mji

Then

Paramagnetic phase : mij =
1

N(T − T0)

(
δij −

1
N

)
Ferromagnetic phase x1 ̸= 0, T ∼ Tc

m11 ≃ N − 1
N2

Q√
Tc − T

> 0 , m1i ≃ − 1
N2

Q√
Tc − T

< 0

mij ≃
1

N2(N − 1)
Q√

Tc − T
> 0 , i , j = 2, . . . ,N ,

where
Q =

Tc/T0√
2xc (2(N − 1)xc +N − 2)T0



Turning on magnetic fields: Finite fields

This is the case with the richest phase structure
▶ Analysis becomes very complicated
▶ Broken and unbroken phases are hard to quantify
▶ Full phase diagram is needed to discern critical surfaces

Let’s focus on only one component magnetic field B1.
▶ Remarkably, if B1 is large enough then the one-row solution

becomes unstable.
▶ Then, two-row and conjugate one-row states are the stable

ones. Hence

SU(N) → SU(N − 2)× U(1)× U(1) .
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Figure: Thick lines represent phase transitions in the magnetization, the
green line is a metastability frontier. Regions A,B are singly marnetized
phases, C metastable mixtures of singly and doubly magnetized, and D a
doubly magnetized phase. The gray dashed curve represents a crossover.



Double scaling limit

When both n,N ≫ 1, then the subleading terms we have ignored
become important. We think of the ki as a continuous distribution.

To do that we reformulate the quantities as:
▶ We define a density

ρs =
N

∑
i=1

δs,ki .

▶ This density ρs satisfies the relations

∞

∑
s=0

ρs = N ,
∞

∑
s=0

s ρs = n+
N(N − 1)

2
,

▶ Then, it can be shown that

dn,k = n!
∞

∏
t>s=0

(t − s)(ρs−1)ρt .



Analysis for very large temperatures
The Hamiltonian is irrelevant, since e−βH → 1.
Consider the entropy-like quantity (its logarithm)

mw ,n;k =
[
dim(k)

]w−1
dn;k =

n!
[
∆(k)

]w( N−1

∏
s=1

s !
)w−1 N

∏
i=1

ki !

,

The constant w parametrizes different cases physically and
mathematically:
▶ w = 1: # of reps from decomposing n fundamentals.

▶ w = 2: # of states from decomposing n fundamentals.

▶ w > 1: Exotic situations; no clear physical meaning.

▶ w < 1: Unphysical, as entropy decreases with dimensionality.



Calling ρ(k) the continuous version of ρs :
▶ Extremize the functional

Sw ,n[ρ(k)] =
w

2

∫ ∞

0
dk

∫ ∞

0
dk ′ ρ(k)ρ(k ′) ln |k − k ′|

−
∫ ∞

0
dk ρ(k) k(ln k − 1)

▶ This is subject to the constraints∫ ∞

0
dk ρ(k) = N ,

∫ ∞

0
dk k ρ(k) = n+

N2

2
.

▶ Setting the functional derivative w.r.t. ρ(k) to zero and
further differentiating with respect to k we obtain

w
∫ ∞

0
dk ′

ρ(k ′)

k − k ′
= ln k + λ ,

becomes a standard single-cut Cauchy problem. To solve it we
define a resolvent etc... We will skip the details.



Solution of the Cauchy problem
It turns out that the solution has two phases depending on the
parameter

nw =
(3w − 2)N2

4
.

Then
▶ Dilute phase n > nw : The density is

ρ(k) =
2

wπ
cos−1

√
k +

√
ab/k

√
a+

√
b

, a ⩽ k ⩽ b ,

where a and b depend on n, N and w .
▶ Condensed phase n < nw : The density is

ρ(k) =

{
1 , 0 < k < a ,

ρ0(k − a) , a < k < a+ b ,

with

ρ0(k) =
2

wπ
cos−1

√
k

b
+

2(w − 1)
wπ

cos−1

√
(a+ b)k

(a+ k)b
.

where a and b are other constants that depend on n, N and w .
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Figure: The distribution ρ(k) for various values of n/N2. For n = 0 (first
panel) the distribution is a step function corresponding to the singlet. For
0 < n < N2/4 (second panel) the edge of the distribution deforms into
an inverse cosine. For n = N2/4 (third panel) the deformation reaches
k = 0, signaling a phase transition. As soon as n exceeds N2/4 (fourth
panel) the left edge of the distribution drops to ρ(0) = 0, and as n
increases (fifth panel) ρ(x) has support on a positive interval. For
n ≫ N2/4 (sixth panel) it approaches a Wigner semicircle distribution.



Phase transitions

Consider the entropy functional Sw ,n[ρ(k)] calculated for the above
two solutions.
As a function of n we found that [Poly-KS]:

▶ Between the two phases it is continuous across n = nw .

▶ However, higher derivatives w.r.t. n are not, signaling a phase
transition.

▶ Summary of phase transitions for various values of w ⩾ 1
transition 3rd order 4th order no transition
w = 1 ✓

w > 1 (w ̸= 2) (crossover) ✓
w = 2 ✓



Concluding remarks
SU(N) ferromagnets display new features:
▶ Various novel phase transitions
▶ Metastable phases
▶ Hysteresis in temperature and magnetic field
▶ Spontaneous breaking SU(N) → SU(N − 1)× U(1)
▶ With M magnetic field components,

SU(N) → SU(N −M − 1)× U(1)M+1 (generically)
▶ Admit large-N limit, N ∼

√
n (shown at very large T )

Future directions:
▶ Higher representations of SU(N);

In particular compose: , and •

▶ Anisotropic couplings hab, further modified symmetry
▶ Higher Casimirs, 3-body and higher interactions
▶ Large-N limit N ∼

√
n, new phases (for finite T )
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