

High power FPCs development for EIC

Wencan Xu Brookhaven National Lab

WWFPC workshop July 2-3 2024

Outline

- Brief introduction of EIC RF systems and FPC counts
- High power FPC design for ESR SRF cavity
 - Requirements
 - Components design
 - Window assembly
 - Vacuum side
 - Air side
- Prototype FPC manufacture progress
 - RF window brazing recipe development
 - TiN coating sample measurement
 - Brazing and EB welding
- Summary and Future Plan

EIC

- The EIC is a unique high-energy, highluminosity, polarized electron-proton/ion collider.
 - High luminosity: L = 1E33 to 1E34 cm-2sec-1
 - Large range of center-of-mass energies Ecm= 29 to 140 GeV
 - High flexible polarization: > 60 %
- EIC is based on the RHIC complex
 - Same RHIC tunnel (space limit)
 - HSR ring: upgraded RHIC ring.
 - New electron facility
 - ESR in RHIC tunnel
 - RCS in RHIC tunnel
 - Electron injection
- Jlab is the EIC partner lab

FPC list for ERIC RF/SRF cavities

RF System	Sub System	Freq [MHz]	Туре	Location	# Cavities	# FPC/cavity	FPC power
Electron Storage Ring	Accel / Store	591	SRF, 1-cell	IR-10	17	2	380
Rapid Cycling Synchrotron (RCS)	Accel / Store	591	SRF, 5-cell	IR-10	3	1	70
	Harmonic Kickers	591	NCRF, QWR, 1-mode NCRF, QWR, 2-mode	IR-2 or IR- 12	1 1	1	
	Bunch Merge Type 1	295	NCRF, Reentrant	IR-4	2	1	70
	Bunch Merge Type 2	148	NCRF, Reentrant	IR-4	1	1	70
Hadron Storage Ring	Capture / Accel	24.6	NCRF, QWR	IR-4	4	1	100
	Bunch Split 1	49.2	NCRF, QWR	IR-4	2	1	200
	Bunch Split 2	98.5	NCRF, QWR	IR-4	2	1	200
	Store 1	197	NCRF, Reentrant	IR-4	7	1	100
	Store 2	591	SRF, 1-cell	IR-10	5	1	60
Strong Hadron Cooling	ERL Injector	197 591	SRF, QWR SRF, 1-cell	IR-2	2 1	2 1	200 10
	ERL Low Energy Linac	197 591	SRF, QWR SRF, 1-cell	IR-2	4 2	2 1	200 10
	ERL Fundamental	591	SRF, 5-cell	IR-2	10	1	60
	ERL Third Harmonic	1773	SRF, 5-cell	IR-2	4 (1 CM)	1	5
Crab Cavities	Hadron	197	SRF, RFD	IR-6	8 (4 CM)	1	70
	Hadron/Electron	394	SRF, RFD	IR-6	6	1	50

FPC list for ERIC RF/SRF cavities

RF System	Sub System	Freq [MHz]	Туре	Location	# Cavities	# FPC/cavity	FPC power (kW)
Electron Storage Ring	Accel / Store	591	SRF, 1-cell	IR-10	17	2	370
Rapid Cycling Synchrotron (RCS)	Accel / Store	591	SRF, 5-cell	IR-10	3	1	70

- EIC FPC summary:
 - About 100 new FPCs are required for EIC RF/SRF systems.
 - Most EIC cavities' frequencies are below ESR SRF cavity's frequency, i.e., 591 MHz.
 - The only cavities with frequency above ESR cavity's frequency are the third harmonic cavity for ERL SHC, i.e., 1773 MHz.
 - The most challenging FPC is for ESR SRF cavity: CW 400 kW.
- EIC FPC strategy:
 - One type of window (new design) for SRF cavities with frequency < 591 MHz
 - One type of window for 1773 MHz: using CEBAF FPC window
 - One type of window for NCRF cavities (loop coupling)

	LINAC	291	SKr, I-cell		2		10
	ERL Fundamental	591	SRF, 5-cell	IR-2	10	1	60
	ERL Third Harmonic	1773	SRF, 5-cell	IR-2	4 (1 CM)	1	5
Crab Cavities	Hadron	197	SRF, RFD	IR-6	8 (4 CM)	1	70
	Hadron/Electron	394	SRF, RFD	IR-6	6	1	50

FPC design requirement for ESR SRF cavity

* Nominal operation parameters: Table 6.63 in CDR (*https://www.bnl.gov/ec/files/eic_cdr_final.pdf*) # Machine design parameters Doorknob Transition

FPC design achieve vs criteria

	Requirement	FPC Design Criteria
Average RF power	380 kW *	1 MW, traveling wave
		500 kW, full reflection
Peak Power (during full reflection)	1.5 MW, equivalent	2 MW, equivalent
Frequency	591 MHz	Broadband window design,
		good for EIC cavities below 591 MHz
Acceleration load	5g,	5g,
	In any orientation	In any orientation
Mechanical Modal frequency	> 60 Hz	> 100 Hz
Q _{ext} of each coupler	2.5E5	Fixed coupler [#] ,
		Tuning <i>Q_{ext}</i> with waveguide junction, a factor of 20

*The beam abort gap is RHIC is 8% of 12.8 us.

Fixed coupling is set at 4E5, and a waveguide junction was tested up to 500 kW CW standing wave(@704 MHz). However, recent evolution of EIC design demonstrated a fixed coupling is feasible for EIC operation, with RF FODO operation mode.

FPC for EIC ESR SRF Cavity

- EIC eSR FPC design is a variation of KEKB/ Tristan/SNS/BNL BeO high power window.
- Particularly, this Al2O3 window FPC improved various aspects based on lesson and learn from design and operating experiences of BNL BeO window, so that it can satisfy the EIC requirements.
 - Replace BeO window with 99.5% Al2O3 for safety and maintenance considerations.
 - Increase choke to window distance for better TiN coating and inspection.
 - Optimized coaxial line to increase power handling and coupling with cavity.
 - Larger ceramic ID to survive 5 g acceleration load in any direction.
 - Improve cooling channel design.
 - Improve instrumentations on FPC.
 - 4.5 kV bias will be ready to apply.

EIC ESR FPC design

- FPC window assembly
- FPC vacuum side outer conductor
- FPC airside components
- The pre-project plan for window development
 - Fabricate 8 RF window assembly, and 4 full FPCs.
 - High power RF condition up to 500 kW standing wave, all phases.
 - Deliver two FPCs for First Article Cryomodule.

RF window assembly

High power broadband window for EIC Cavities

- A high power, broadband window has been designed for EIC RF/SRF cavities.
 - Broadband: < -40 dB for frequency below 591 MHz.
 - The peak field at the braze-joint is 367 kV/m.

Maximum (Plot) 716.924 V/m

3DEXPERIENC

Thermal and mechanical design

- Water cooling for inner conductor and window.
- RF thermal simulation
 - 1 MW power input
 - Conservative thermal film coefficient
- Temperature difference in the ceramic is 10 degree.
- Highest temperature of 40 C is at uncooled flanges.
- Choke tip highest temperature is 34 C.
- AI_2O_3 temperature ranges from 24 C to 34 C
- 1st mechanical modal frequency is 100 Hz

Multipacting Simulation with SPARK3D

- Mulitpacting simulation in two regions: vacuum side
- Multipacting simulation was carried out with and w/o DC bias.
- In reality, a DC bias will provision for application if we need.

There will be SEY measurement results on the samples in the later slide

Multipacting in Window Region: Typical TiN SEY

Multipacting Simulation results in EIC FPC window region

- With SEY_max=1.2, only one narrow MP zone at 310, 330 kW, no bias is needed.
- With SEY_max=1.5, a wide MP zone spans from 100-520 kW. However, when 4 kV bias is applied, there is not MP.

Multipacting in Window Region: No TiN Coating (SEY_max=9)

- Without TiN coating, multipacting happens everywhere, due to broad SEY>1 for all impact energy.
- With 4.5 kV DC bias, MP in the window area will be suppressed. **Electron-Ion Collider** 16

Multipacting in Coaxial Line Region

• When above 3.5 ~4.5 kV DC bias is applied, there is no MP in coaxial line region.

• So a 4.5 kV DC bias will be ready to be applied, if needed, to suppress all multipacting.

Vacuum side outer conductor

Vacuum side outer conductor

- Challenge:
 - Compact space: Short distance between 2 K to 300 K
 - Large RF heating (especially in some operation scenarios)
 - FPC flange is the LHe boundary, i.e, the FPC tube on the cavity is immersed in the LHe.

Thermal design results

- 5.5K helium, 3.3atm, 300mg/s inlet flow
- 400kW RF power (10GeV operation voltage and 2.5A average beam current)
- 4W radiation load, 20W heaters
- Shielded seal provides direct path between warmer flange and niobium
- Assuming perfect contact for both knife edge and RF shield. No contact between flanges

- All results meet the requirements
- 6.1K niobium temperature @300mg/s trace flow
- Lowest temperature at bellows flange: 298 K
- 8.2W heat flow to 2K
- 80K outlet temperature, 287kPa pressure
- 61m/s max velocity in the channel

Airside components

FPC air side components

- FPC Airside Components:
 - FPC airside length needs to cooperate the limit space in the tunnel
 - Doorknob is optimized for RF transmission, and we are working on engineering design based on error analysis results.

Doorknob tuning mechanism

Airside outer conductor

- Water cooling.
- 150 W RF power dissipation

D: Steady-State Thermal Temperature Type: Temperature Unit: "C Time: 1 s 4/30/2024 2:40 PM 39.855 39.855 39.855 39.855 39.855 39.855 39.855 39.855 39.855 39.855

38.924 37.992 37.061 36.129 35.197 34.266 33.334 32.403 31.471 **30.54 Min**

Electron-Ion Collider

Airside inner conductor

- Challenge to bring water to the end of the airside inner conductor.
- 1500 W of RF dissipation (With RF FODO operating scenarios, RF dissipation is ~10 times smaller).

Temperature Type: Temperature Unit: °C 65.915 Time: 1 s 57.858 6/26/2024 3:07 PM 53.881 76.401 Max 74.131 74.637 72.325 71.861 54.424 69.591 67.321 Min 50.002 \$1.293 53.457 60.511 58.241 52.397 55.971 53.701 50.895 51.431 49.161 Max 46.89 44.62 42.35 0.000 0.050 0.100 (m) 40.08 0.025 37.81 0.075

Water cooling for doorknob and waveguide

- Water cooling design is capable of up to 5.4 kW RF dissipation.
- RF dissipation will be only ~500 W, with recent determination of the operation mode (focus-defocus).

Prototype FPC manufacture progress

- RF window brazing recipe development
- TiN coating sample measurement
- Brazing and EB welding

RF window brazing recipe development

Successfully brazed RF window

Question: which side is preferred for the vacuum side?

TiN coating study (1)

- TiN coating will be coated on ceramic vacuum side.
- TiN coating study
 - TiN coating on a window mockup structure.
 - Coated by two vendors
 - Measure SEY
 - Measure species on the TiN coating
 - Measure TiN coating thickness

eramic

TEM analysis on TiN coating

Both vendor got TixNiyOz, but with different composition.

TiN coating SEY measurement

Three samples sent to KEK (Kirk Yamamoto, Thank you!) for SEY measurement

- BNL#1 and BNL#2 were coated by vendors
- BNL #3 was bare Al2O3

Both vendors' SEY results are close to each other.

Multipacting simulation

- Conservative (worse than the measurement results) SEY curve was used for multipacting simulation.
- Multipacting simulation shows that multipacting will be fully suppressed (even no TiN coating on ceramic) with 4.5 kV DC bias applied.
- However, TiN will be coated on the ceramic.
- FPC test will start without bias.

Window Manufacturing - Status

Water adapters

Vacuum-side Flange sub-assembly

Air-side Flange sub-assembly

Water supply/returns
Electron-lon Collider

34

Small Sleeve / Tapered Choke

EB welding test

FPC conditioning box and cart

- Finalized FPC conditioning box drawing package.
- Started to refurbish FPC conditioning cart.
- Hopefully, we can start high power conditioning by the end of summer 2025

Summary and plan

- EIC RF needs about 100 new FPCs, which most of them will use the same RF window design.
- The most demanding FPC is the FPC for ESR SRF cavities. And a CW 500 kW high power FPC has been designed for ESR SRF cavity.
- Prototype Manufacture
 - Will make 8 window assembly and 4 full FPCs.
 - Completed sample tests (brazing, EB welding, coating).
 - Most of parts have been made for 5 full FPCs.
 - Ready to proceed full FPC manufacture.
 - Completed FPC conditioning box design and working on drawing package.
 - FPC conditioning setup is under preparation.

Acknowledge

- BNL: Jesse Fite, Doug Holmes, Eric Link, Eric Polanco, Donald Landwehrle, Alex Zatsman, Kevin Smith, and more...
- Jlab: Bob Rimmer, Zack Conway, Eduard Drachuk, Jim Henry, and more...
- CERN: Eric Montesinos
- SNS: John Mammosser
- KEK: Eiji Kako, Kirk Yamamoto
- IHEP: Tongming Huang
- FNAL: Sergey Belomestnykh
- Everyone in this meeting !!