

Progress of FPCs development at Peking University

Fang Wang

on behalf of our SRF group

July 2, 2024

1. The Facility

CONTENTS

2. The development of the FPCs

3. Summary

1.1 The facility

1.2 The 2 × 9-cell cryomodule

It can accelerate the electron beam to $10 \sim 30$ MeV, also uses a LN₂ shield inside.

1.4 The CW operation of DC-SRF-II

CF-11 gun and bea 1 MHz

Table I. Measured emittance and relevant parameters.					
Parameters	$100~{\rm pC}$	$50~{\rm pC}$	$20~{\rm pC}$	Units	
SRF cavity gradient	14.4	14	14	MV/m	
Drive laser size (σ_0)	1.0	1.0	0.8	$\mathbf{m}\mathbf{m}$	
Electron beam energy	2.42	2.35	2.35	${\rm MeV}$	
Normalized emittance	0.54	0.40	0.28	$\operatorname{mm-mrad}$	
Core emittance	0.28	0.25	0.19	$\operatorname{mm-mrad}$	
Core fraction	70%	75%	77%		

Short-term tests were performed with a current up to 3mA and at the energy of 1.7 MeV.

arXiv:2406.00659

2. The development of the FPCs

2.1 Resonant ring for coupler conditioning

2.2 Couplers for DC-SRF-I gun

2.3 Couplers for 2×9 -cell cryomodule

2.4 Couplers for DC-SRF-II gun

2.5 Couplers for DALS injector CM00

2.1 Resonant ring for coupler conditioning

40

Test bench of the resonant ring

≥200 kW in 10 Hz 5 ms, ≥70 kW in CW

The 6th worldwide meeting on Fundamental RF Power Coupler (2024)

4

Pin in kW

6

2

(a)

10

8

(b)

8

10

4

6

Pin in kW

2.2 The coupler with capacitive coupling

The coupler for DC-SRF-I gun

The warm ceramic window of waveguide type

2.2 The performance of the capacitive coupling couplers

Cold test using vector network analyzer:

■ VSWR=1.07@1.3GHz, the bandwidth with VSWR < 1.1 is 30 MHz.

RF conditioning on the test stand

• Up to 17 kW in SW with 10Hz 40%, which was limited by the power amplifier.

Warm off-resonance RF conditioning on the DC-SRF-I gun

• Up to 17 kW in SW with 10 Hz 40%

Long-term operation on the DC-SRF-I

- > The cracking of the warm widow occurred sometimes.
- \blacktriangleright In CW mode, for safety consideration, the power was limited to 5 kW.

2.3 The hybrid coupler for 2×9-cell SRF linac

investigate the CW capacity of the capacitive coupling coupler and develop power couplers for the 2 9-cell cavities

The structure of upgraded type of power coupler with capacitive coupling: (a) overall layout, (b) warm section, and (c) cold section

2.3 Multipacting and thermal analysis simulation

2.3 Results from the high power test

2.4 the power coupler for DC-SRF-II gun

The improvements to enhance cooling

Forced N₂ gas cooling for the warm inner conductor
 Forced N₂ gas cooling for the warm ceramic
 Forced water cooling for the doorknob transition
 A OFHC copper block is connected to the cold ceramic
 Intercepts are added in the bellows

Microwave design simulation

r4

 r_3

rm

h2

2.4 Multipacting simulation of the coupler

Normalized SEY curve of all four regions with different DC bias applied on inner conductor

 \blacktriangleright Voltage higher than 1.5 kV is good for power up to 80 kW.

 \blacktriangleright DC bias of 0.5 kV and 1 kV is not good for the multipacting suppressing.

≤25 kW
cold-ceramic
0.5 kV
≤15 kW
cold-ceramic
warm-ceramic

0 kV

1 kV ≤45 kW warm-ceramic

≥1.5 kV 80 kW

The 6th worldwide meeting on Fundamental RF Power Coupler (2024)

2.4 thermal analysis

Static and total heat load with RRR=30. Considering the uniformity of the copper layer, the thickness are 15 μm and 50 μm , respectively.

Copper	Heat load to	Heat load to	10 kW		20 kW	
depth/µm	2 K / W	77 K / W	2 K/ W	77 K/ W	2 K/ W	77 K/ W
5	0.053	2.47	0.75	11.90	1.32	22.8
10	0.062	2.56	0.79	11.55	1.28	21.97
15	0.07	2.64	0.88	11.61	1.36	21.96
20	0.08	2.72	0.97	11.69	1.45	22

Temperature distribution without RF power

Effects of the SS block with copper plating vs. the OFHC copper @20 kW With the OFHC copper block, the highest temperatures of the cold inner conductor and the cold ceramic decrease significantly, from 257K to 200K, from 269K to 185K, respectively.

Effects of the forced N_2 gas cooling: none vs. 20L/min @20 kW The gas cooling is needed. Without cooling, the highest temperature is up to 403 K in the bellow part, and 367K on the warm ceramic. With 20L/min N_2 cooling, the temperatures both decrease to 339K.

2.4 from fabrication to assembly

2.4 the conditioning of the coupler at pulse mode

- \blacktriangleright DC bias of 0.5 kV and 1 kV is worse than no bias.
- Over 2.5 kV is effective.
- \succ The result is partly consistent with the simulation.

2.4 Re-conditioning of the coupler

8 h CW TW 25 kW without DC bias (a)Power and vacuum, (b)temperature

- The couplers were brought back to the clean room.
- All the parts were cleaned from the ultrasonic bath to filtered highpurity nitrogen gas blowing.
- With reliable clean assembly, the power can be raised sharply.
- Pt100 sensors stuck to the outside of OFHC copper block 58°C@25kW 70°C@30kW This result gave us much confidence on

30 h CW TW30 kW with 3 kV DC bias (a)Power and vacuum, (b)temperature

the power operation under 25 kW.

2.4 the coupler on the DC-SRF-II gun

2.4 the coupler on the DC-SRF-II gun

Before the disassembly of the DC-SRF-II, a cold off-resonance conditioning at 2 K was conducted. A CW 4.5 kW forward power was applied for one and half hour. It can be seen it needs a long time to get thermal balance.

① incident power kept at about CW 4.5 kW; ② turn off the incident power; ③ turn off the 2 K cooling

2.4 the coupler on the DC-SRF-II gun

Disassembling from the DC-SRF-II injector after three months tests The coupler parts were only blown with filtered high-purity nitrogen gas again, and then assembled to the gun.

2.4 the coupler on the DC-SRF-II gun---beam operation

In the 1mA to 3mA beam test, the gun encountered some other problem, only short-term tests were available, it was quite short for the coupler to get thermal balance.

Heat load at cryogenic temperature needs to be further investigated.

2.5 Power couplers for DALS injector CM00

CM00 Beam Design Parameters

Parameter	Values	Unit	
Q_b	100	pC	
f_b	1	MHz	
Entrance E_0	300(DC)-750(VHF)	keV	
Export E_0	2-4	MeV	
Normalized emittance ε_n	0.56	mm-mrad	
I_0	0.1	mA	
Longitudinal bunch length σ_z	1(VHF)-2(DC)	mm	

Heat load with RF power of 10 kW				
Temperature zone	2 K	8 K	55 K	
heat load	0.15 W	5.67 W	26.38 W	
Four couplers ar	e needed.	, six ones	are made.	

- A twin coaxial couplers
- CW power: ≥ 10 kW at

room temperature

conditioning

• Q_{ext} of a single coupler 6E6-1.6E7

8K

Copper layer thickness:
 150 µm for the inner
 30 µm for the outer

2.5 thickness measurements

2.5 RRR measurements

Results of RRR measurements

高能锐

Measure the RRR of the samples from four domestic venders. Two of them provided samples both from cyanide bath and sulfate bath. For the GL cyanide bath samples, the heat-treatment parameters are modified to improve the RRR.

2.5 The power couplers as received and during cleaning

The 6th worldwide meeting on Fundamental RF Power Coupler (2024)

2.5 The baking

- The baking procedure: increasing the temperature with a gradient of 10°C/h, and maintaining a temperature of 150°C for 48h.
- All ion pumps are shut off when the temperature reaches 150°C.
- Defects: As the baking was carried out by using heating tapes in air, and the heating is not uniform. The outer surfaces of the OFHC copper intercept blocks had different colors.
- Tightly wrap the silicone rubber tapes around the couplers afterwards.

2.5 arcing outside the vacuum during RF conditioning

Burnout due to some improper assembly

2.5 The 1st pair of power couplers for DALS injector CM00

2.5 The 2nd&3rd pair of power couplers for DALS injector CM00

The 6th worldwide meeting on Fundamental RF Power Coupler (2024)

3 Summary

Time	2007-2016	2013-2019	2015-2017	2018-now	2020-now
Structure	Capacitive coupling	Hybrid coupler	Resonant ring	TTF-III like	TTF-III like
Project	DC-SRF-I gun	2x9-cell		DC-SRF-II gun	DALS 2 × 2-cell cryomodule
Tested Power	20kW 10Hz 40ms 5kW CW	110kW 10Hz 5ms 15kW CW	200 kW 10Hz 5ms 70 kW CW	100 kW 10Hz 5ms 30kW CW	15kW CW
Status	Beam operation (2011-2016)	Beam operation (2019-now)	Operation (2017-now)	Beam operation (2021-now)	High power tested
Operatio n Power	5kW CW max	8kW, 5Hz, 2ms		7kW CW max 3kW CW typ.	

- Three types of power couplers have been developed during the facility construction. The heat load will be further investigated at cryogenic temperature with higher power.
- After nearly 20 years of efforts, DC-SRF photocathode gun has gradually developed from concept design to a stable operation device.

Thanks for your attention

2.5 Typical S curves of the coupler-pair

The 6th worldwide meeting on Fundamental RF Power Coupler (2024)

The refrigerant compressor operates periodically

The heat is expelled via a fan.