

Monolithic Pixel Detector with SOI technology

June. 27, 2011 @CERN, PH-ESE Electronics Seminar Yasuo Arai, KEK yasuo.arai@kek.jp http://rd.kek.jp/project/soi/

OUTLINE

- Introduction of SOI Pixel Project
- •SOI Detectors
- Developing Techniques
- •Summary

<u>SOI Wafer (UNIBOND™)</u> (1995, LETI -> SOITEC)

- Initial silicon wafers A & B
- Oxidation of wafer A to create insulating layer
- Smart Cut ion implantation induces formation of an in-depth weakened layer
- Cleaning & bonding wafer A to the handle substrate, wafer B
- Smart Cut cleavage at the mean ion penetration depth splits off wafer A
- O Wafer B undergoes annealing, CMP and touch polish => SOI wafer complete
- Split-off wafer A is recycled, becoming the new wafer A or B

Features of SOI Pixel Detector

- Bonded wafer : High Resistivity (Sensor) + Low Resistivity (CMOS) .
- Truly Monolithic Detector (-> High Density, Low material, Thin Device).
- Standard CMOS can be used (-> Complex functions in a pixel).
- No mechanical bump bonding (-> High yield, Low cost).
- Fully depleted sensor with small capacitance of the sense node (~10fF, High conversion gain, Low noise)
- Based on Industrial standard technology (-> Cost benefit and Scalability)
 SOI Pixel Detector
 Radiation
- \bullet No Latch Up, Low SEE $\sigma.$
- Low Power
- Operate in wide temp (4K-300C) range.

Bulk CMOS vs. SOI CMOS

In SOI, Each Device is completely isolated by Oxide.

Steep Sub Threshold Slope

Lower Threshold (Leakage Current) is possible without increasing Leakage Current (Vth).

Operation at Cryogenic Temperature

IV characteristics at cryogenic temperature Body tie type

8

SOI Pixel Project Brief History

- '05. 4 : Proposed to KEK Detector Technology Project. (Generic R&D)
- '05.7: Start Collaboration with OKI Semiconductor.
- '05.10 : 1st Submission in VDEC 0.15 um MPW.
- '06.12 : 1st (and last) 0.15 um KEK MPW run.
- '07.3 : 0.15 um lab. process line was closed.
 - \rightarrow move to 0.2 um mass production line at Miyagi.
- '08.1 : 1st 0.2 um KEK SOI-MPW run.
- '08.10 : OKI is owned by ROHM Co. Ltd. (Lehman Shock)

'11.1: 6th KEK SOI-MPW run

SOI Pixel Process Flow

$\underline{\text{OKI semi/ROHM 0.2 } \mu \text{m FD-SOI Pixel Process}}$

Process	0.2µm Low-Leakage Fully-Depleted SOI CMOS 1 Poly, 5 Metal layers. MIM Capacitor (1.5 fF/um ²), DMOS Core (I/O) Voltage = 1.8 (3.3) V
SOI wafer	Diameter: 200 mmφ, 720 μm thick Top Si : Cz, ~18 Ω-cm, p-type, ~40 nm thick Buried Oxide: 200 nm thick Handle wafer: Cz (n) ~700 Ω-cm, FZ(n) ~7k Ω-cm, FZ(p) ~40 k Ω-cm
Backside process	Mechanical Grind, Chemical Etching, Back side Implant, Laser Annealing and Al plating

SOI Detectors

Integration Type Pixel (INTPIX)

+Vdet

Size : 14 μm x 14 μm with CDS circuit

Integration Type Pixel (INTPIX4)

Largest Chip so far.

17

Data Acquisition Board

- Soi EvAluation BoArd with Sitcp(SEABAS)
- A FPGA controls the SOI Pixel chip
- Directly transferred to Ethernet

Spatial Resolution (Contrast Transfer Function)

- Comparison of contrasts with commercial X-ray devices.
 - SOI Pixel : INTPIX4, Flat Panel Sensor (FPS), CCD, and Imaging Plate (IP)

INTPIX4

Pixel Size : 17 um x 17 um No. of Pixel : 512 x 832 (= 425,984) Chip Size : 10.3 mm x 15.5 mm Vsensor=200V, 250us Int. x 500 X-ray Tube : Mo, 20kV, 5mA

ուսուսուսուսուսուսությունը առնարան

Fine resolution & High Contrast

5mm X-ray Image of a small dried sardine taken by a INTPIX4 sensor (3 images are combined).

(A. Takeda)

XRPIX1

◎ XRPIXI-CZ Correlated Multi Sampling 試験 2011/02/10@-50℃,100Vb ◎ 39D (ST&BT Type) Single Pixel (25,25) Spectrum (Target: Cu + Mo)

<u>e+ Beam Test at Tohoku Univ.</u>

Counting Type Pixel (CNTPIX)

CNTPIX5 Pixel Layout

64×64 um²

~600 Tr/pix x 72 x 212 = 10 M Trs

Pixels are working but some crosstalks are observed.

Count v.s. X-ray Tube Current

Developing Techniques

- Suppress the Back Gate Effect.
- Shrink pixel size without loosing sensitive area.
- Increase break down voltage with low dose region.
- Less electric field in the BOX which improve radiation hardness.

Back gate effect is suppressed by the BPW.

Radiation Tolerance

SOI is Immune to Single Event Effect

But not necessary strong to Total Ionization Dose due to thick BOX layer

Radiation Tolerance and BPW

By adding the BPW layer, Electric field in the BOX is reduced and possibility of charge recombination will increase. Thus increase radiation tolerance.

TID(Total Ionization Doze) Damage Compensation

Leak Current and V_{Th} resumes to nearly original value by biasing back side even at 100Mrad.

FZ(p and n) SOI Wafer

It was difficult to process 8" FZ-SOI wafer in CMOS process.

We optimized the process parameters, and succeeded to perform the process without creating many slips.

Wafer type and Leakage Current

Nested BNW/BPW Structure

- Signal is collected with the deep Buried P-well.
- Back gate and Cross Talk are shielded with the Buried N-well.

FEE2011 G. Deptuch (Fermilab)

Stitching test is in preparation.

We have submitted 3D test chips on Feb. 2009 and Feb. 2010 to the SOI process. These chips are being bonded with μ -bump technology (~5 um pitch) of T-micro Co (ZyCube).

We had a few technical problems and non-technical issues.

(1) Stack Process Flow (after finishing wafer process)

T-Micro

Copyright 2009 OKI semiconductor Co. Ltd.

We observed Resist is melting into the μ -bump hole after back grinding.

Back Grinding

We changed the order, so the back side is grinded before the μ -bump hole formation.

T-Micro

Before adhesive injection

Before Si etching

Si etching

Si etching

After Si etching

Now Back side Al plating is being done

4. Summary

- SOI technology has many good features; low power, large range of operating temperature, low single event effect, vertical integration, ...
- SOI Pixel process becomes more stable and practical to use. Most of the technical problems are solved.
- We have ~twice/year regular MPW runs with increasing no. of users (Next MPW run is Oct. 3rd).
- Many pixel sensors are working and showing good performance.
- The process is still progressing; Higher resistivity, Nested well structure, Double SOI, Larger mask size, Stitching, ...
- We welcome new users to the SOI pixel process.