

HL-LHC Low Level RF

SM18 RFD CryoModule tests

Gregoire Hagmann

June 18, 2024

HL-LHC LLRF Project

Objectives for SM18 test stand

- LLRF objectives (RFD C2)
 - Commissioning of newly installed LLRF (additional HW to BA6)
 - New RF front-end (ease RF calibration, LLRF setting-up)
 - New Polar-Loop (PL): gain/phase loop around amplifier
 - Linearize amplifier gain and phase (wrt to power)
 - Restore open-loop phase for Fdbk
 - New TunerLoop firmware and software
 - Partial software migration to non-multiplex (keeping SPS timing)
- Preparation for BA6 MDs
 - Gaining experience on RFD cavities
 - Migration to non-multiplex and CW operation (RF ON/OFF sequence)
 - Deployment/Debugging of new feature in SM18 rather than in BA6
- LLRF as a tool for SRF (cryomodules validation)
 - Voltage ramp up to 3.4MV (SEL or Driven loop)
 - Measurement of the cavity parameters

Fig – LLRF Hardware

Summary on RFD C2 tests

- RF Front-end module commissioned
 - RF calibration (LLRF acq based on power sensors)
 - Ease calibration (decoupling LLRF and cable/cavity calib)
- TunerLoop module commissioned
 - Heritage from L4
 - Multiple firmware issues solved (metastability, CDC, improved prevision for low level signals)
 - New software commissioned (FESA, inspector)
- Self-Excitation Loop (SEL) commissioned
 - Operational even w/o circulator
 - Fine tuning (phase) necessary for smooth switch over to DrivenLoop
 - Operation with short pulses $(10ms) \rightarrow 3.7MV$
- Switch&Limit commissioned
 - Drive chain calibrated at 1MV (1.5kW)
 - Very dependent on amplifier gain non-linearity (Polar-loop will compensate for it)

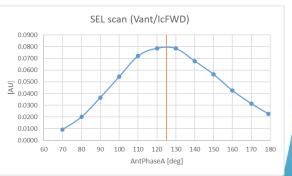


Fig – Phase scan for SEL

Summary on RFD C2 tests

- DrivenLoop commissioned
 - Impossible w/o circulator
 - Low ponderomotive oscillations if well on tune (Stable TunerLoop operation is necessary)
- RF Feedback commissioned
 - Total loop group delay RFD C2: 1600ns
 - Proportional gain used only: Gp=40 (32dB impedance reduction, theoretical max value Gp=120)
 - HL-LHC target : 1200ns, Gp=150
 - Missing controls added (AC coupler, Setpoint, etc.)
 - New software commissioned (FESA, inspector)
- PolarLoop (PL) commissioned
 - Non-optimal settings to cope with 60dB coupler
 - Phase loop working fine (Gain = 0.5)
 - Gain loop issue to be investigate (Gain=0.005)
 - Gain loop operational with SEL
 - Automatic operation with >600W, >600kV

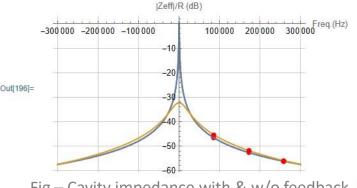
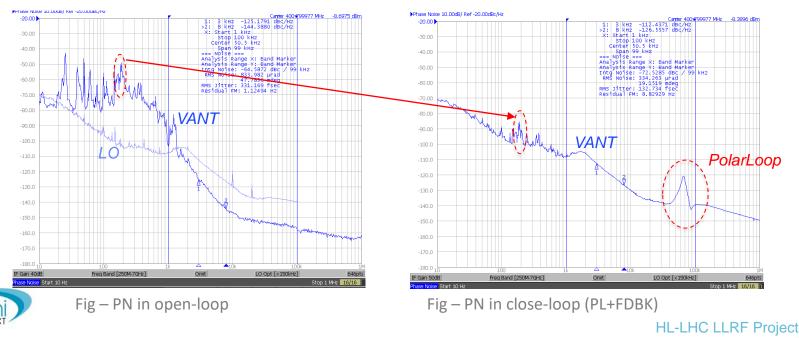


Fig – Cavity impedance with & w/o feedback



Summary on RFD C2 tests

- RF noise similar to BA6
 - Dominated by RF receiver noise (Clock, LO, ADC)
 - Fdbk gain of 32dB

L-LHC PROJEC

Peaking due to the PolarLoop around 70kHz (to be investigate)

Next steps, SM18

- LLRF commissioning on 2nd Cavity (sept 2024)
 - 50dB forward coupler? (IgFWD, IcFWD)
- Migration to CW operation
 - Non-multiplex operation, decoupled from SPS timing
 - More efficient for SM18 tests and SPS MD's
 - RF on/off sequence
 - Mainly a software task (try minimizing firmware changes)
 - Firmware change to switch over from SEL to DrivenLoop
- Consolidation of the controls
 - Units, conversion factors, acquisition, etc.
 - Automatic phase scan?
- We need to minimize the work on the VME platform
 - Priority must be put on final hardware (MTCA)

