The 43<sup>rd</sup> International Symposium on Physics in Collision

# **Recent Results of Baryon Electromagnetic** Form Factors at **BESIII**



### Outline

### Introduction

- Internal Structure of Nucleon
- Methods and Experiments for Proton EMFFs
- Baryon EMFFs in Time-Like Region
  - Nucleon EMFFs
  - Hyperon EMFFs



Summary and Outlook

一尺之種,日取其半,萬世不竭。二, 莊周《莊子・天下》

A chi-long stick, cut in half every day, will never be exhausted in myriad ages. — "Chuang-Tzu · All-Under-Heaven" by Chuang Chou

3

< D > < A

EL OQO

### Experiment of Electron Proton Scattering







**Robert Hofstadter** 

The **Nobel Prize** in Physics 1961

- The differential cross section of ep scattering indicates that **proton is not charged pointlike particle**,
- The shape (or internal structure) of proton might be described by the form factors.

R. Hofstadter and R. McAllister, Phys. Rev. 98 (1955) 217; R. Hofstadter, Rev. Mod.
Phys. 28 (1956) 214; R. Hofstadter,
F. Bumiller and M. R. Yearian, Rev. Mod.
Phys. 30 (1958) 482.

Dexu Lin (IMP)

3/21

### Electromagnetic Form Factors of Proton



- **\*** Spin- $\frac{1}{2}$  baryons: two form factors
- ★ Assuming one photon exchange:  $\mathcal{M} = -\frac{e^2}{a^2} j_{e\mu} j_p^{\mu}$
- **\*** Hadronic current:  $j_p^{\mu} = \bar{u}(p_2) \left[ \gamma^{\mu} F_1(q^2) + \frac{i\kappa \sigma^{\mu\nu} q_{\nu}}{2m_p} F_2(q^2) \right] u(p_1)$
- ★ Sachs form factors:  $G_{\rm E}(q^2) = F_1(q^2) + \frac{\kappa q^2}{4m_p^2} F_2(q^2)$   $G_{\rm M}(q^2) = F_1(q^2) + \kappa F_2(q^2)$
- ★ Elastic scattering:  $e^- p \rightarrow e^- p$  **Space-Like (SL) region**:  $q^2 \simeq -2E_e E'_e (1 - \cos \theta_e) < 0$ ★ Annihilation:  $e^+ e^- \leftrightarrow p \bar{p}$ 
  - Annihilation:  $e^+e^- \leftrightarrow p\bar{p}$ **Time-Like (TL) region**:

$$q^2 = s = M_{p\bar{p}}^2 > 0$$

 $\kappa$  is the anomalous magnetic moment

### Measure the Form Factors at an $e^+e^-$ Collider





|            | Energy Scan                                                                                                                                                    | Initial State Radiation                                                           |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| $\sqrt{s}$ | discrete                                                                                                                                                       | fixed                                                                             |
| L          | low at each beam energy                                                                                                                                        | high at one beam energy                                                           |
| σ          | $\frac{\mathrm{d}\sigma_{\mathrm{p}\bar{\mathrm{p}}}}{\mathrm{d}\cos\theta} = \frac{\pi\alpha^2\beta C}{2q_2^2} [ \mathbf{G}_{\mathrm{M}} ^2 (1+\cos^2\theta)$ | $\frac{d\sigma_{p\bar{p}\gamma}}{dq^2} = \frac{1}{s}W(s,x)\sigma_{p\bar{p}}(q^2)$ |
|            | $+\frac{4m_{\mathrm{p}}^2}{q^2} \mathrm{G_E} ^2\sin^2	heta]$                                                                                                   | $W(s,x) = \frac{\alpha}{\frac{\pi}{2}x} (\ln \frac{s}{m_e^2} - 1)(2 - 2x + x^2)$  |
| $q^2$      | single at each beam energy                                                                                                                                     | from threshold to s                                                               |
|            | BESIII, CMD-3,                                                                                                                                                 | BaBar, BESIII, Belle, Belle-II,                                                   |
|            |                                                                                                                                                                |                                                                                   |

ISR suppression factor:  $\frac{\alpha}{\pi} \sim \frac{1}{400}$ 

프 🖌 🖌 프

• • • • • • • •

고 노

### Beijing Electron Positron Collider II (BEPCII)



6/21

Dexu Lin (IMP)

Baryon EMFFs

### **BESIII Spectrometer on BEPCII**



# Electron Positron Annihilation Data at BESIII



Physics Quantities Measured

- Differential cross section of  $e^+e^- \rightarrow B\bar{B}$  (spin- $\frac{1}{2}$ ):  $\frac{d\sigma_{B\bar{B}}}{d\cos\theta} = \frac{\pi \alpha^2 \beta C}{2q^2} [|G_M|^2 (1 + \cos^2\theta) + \frac{4m_B^2}{q^2} |G_E|^2 \sin^2\theta],$
- Electromagnetic form factors (EMFFs):  $|G_E|, |G_M|$  and relateiv phase  $\Delta \Phi (\Im m [G_E G_M^*])$ ,
- Effective FF (total cross section):  $|G_{eff}| = \sqrt{\frac{2\tau |G_M|^2 + |G_E|^2}{2\tau + 1}},$
- **Polarization** of hyperon is self-analyzing:  $\mathcal{P}_{y} = -\frac{\sin 2\theta \Im m[G_{\rm E}(s)G_{\rm M}^{*}(s)]/\sqrt{\tau}}{|G_{\rm E}(s)|^{2}\sin^{2}\theta/\tau + |G_{\rm M}(s)|^{2}(1+\cos^{2}\theta)},$

리님

Nucleon EMFFs

### Proton Electromagnetic Form Factors



Nucleon EMFFs

### Neutron Electromagnetic Form Factors





- High precision of the neutron EMFFs measurements in a wide  $q^2$  region,
- Very difficult to select the pure neutral final states,
- $\bullet$  First time ever to extract the individual  $|G_{\rm E}|$  and  $|G_{\rm M}|$  of neutron in TL region,
- Direct annihilation with data at  $\sqrt{s} = 2.0 3.08$  GeV.

#### Nucleon EMFFs

### Nucleon Pair Production through the $e^+e^-$ Annihilation



- The coupling strength of  $\gamma^* p \bar{p}$  and  $\gamma^* n \bar{n}$  is varied with different  $\sqrt{s}$ , which is differed from any naïve prediction models,
- Oscillation of residual  $|G_{eff}|$  observed in neutron with a phase orthogonal to that of proton.

Dexu Lin (IMP)

#### Barvon EMFFs

# From Nucleon to Hyperon

- Difficult to measure the hyperons EMFFs in the Space-Like region due to the unstable of hyperon either as target or beam,
- Access their EMFFs in the TL region via pair production of hyperons in the  $e^+e^-$  annihilation.
- Advantage: self-analyzing of the polarization of hyperons.

 $\mathcal{P}_{y} = -\frac{\sin 2\theta \Im \left[ \mathbf{G}_{\mathbf{E}}(s) \mathbf{G}_{\mathbf{M}}^{*}(s) \right] / \sqrt{\tau}}{|\mathbf{G}_{\mathbf{E}}(s)|^{2} \sin^{2} \theta / \tau + |\mathbf{G}_{\mathbf{M}}(s)|^{2} (1 + \cos^{2} \theta)},$ 

- Extract the relative phase between  $G_E$  and  $G_M$  of the hyperons,
- The threshold is accessible benefited the decay of the hyperons.

Nuov Cim A 109 (1996) 241



Dexu Lin (IMP)

# EMFFs of $\Lambda$ Hyperon at BESIII



- and ISR (tagged) methods at BESIII,
- The cross sections (effectiv FF) are measured in a wide  $q^2$  range,
- The ratio and relative phase of  $\Lambda$  EMFFs at  $\sqrt{s} = 2.396$  GeV:  $\left|\frac{G_{\rm E}}{G_{\rm M}}\right| = 0.96 \pm 0.14 \pm 0.02, \ \Delta \Phi = 37^{\circ} \pm 12^{\circ} \pm 6^{\circ}.$

B Phys. Rev. D 97 (2018) 032013

direct annihilation

2.2324 - 3.08 GeV ISR (tagged) return

th. - 3.0 GeV

(by data at  $\sqrt{s} \ge 3.773$  GeV)

B Phys. Rev. D 107 (2023) 072005

# EMFFs of $\Sigma$ Hyperon at BESIII



- Isospin triplet of strange hyperons:  $\Sigma^{-}(dds)$ ,  $\Sigma^{+}(uus)$  and  $\Sigma^{0}(uds)$ ,
- EMFFs of all the three hyperons are measured via direct annihilation,
- An ISR measurement is also performed for the  $\Sigma^+$  EMFFs study,
- Cross section for the isospin triplet roughly:  $(9.7 \pm 1.3)$ :  $(3.3 \pm 0.7)$ : 1.

| direct annihilation for $\Sigma^{\pm}$ and $\Sigma^{0}$ |         |  |
|---------------------------------------------------------|---------|--|
| 2.3864 - 3.02 GeV                                       |         |  |
| ISR (untagged) return for $\Sigma^+$                    |         |  |
| th 3.0 GeV                                              |         |  |
| (by data at $\sqrt{s} \ge 3.7$                          | 73 GeV) |  |

э

교내님

୬ ଏ ୯ 14/21

# Determine the $\Sigma^+(uus)$ EMFFs Completely





- Joint angular distribution in the reaction of  $e^+e^- \rightarrow \Sigma^+ \bar{\Sigma}^- (\rightarrow p \pi^0 \bar{p} \pi^0)$ ,
- Unpolarized, correlated and polarized,

▶ ★ 臣

э.

> = = nar

15/21

Determine the ratio and relative phase of Σ<sup>+</sup> EMFFs for the first time.

Baryon EMFFs Hyperon EMFFs

### Cross Section and Effective FF of $\Xi$ Hyperon – Two Valence *s*-Quarks



- Cross sections of e<sup>+</sup>e<sup>-</sup> → ΞΞ are measured via direct annihilation with data at √s = 2.644 - 3.08 GeV,
- Limited statistics for the points close to the threshold,
- The ratio of Born cross section and effective FF ( $G_{eff}$ ) of the two channels are within  $1\sigma$  of the expectation of isospin symmetry.

= 900

16/21

### EMFFs of $\Omega$ Hyperon – Three Valence *s*-Quarks



• Upper limits of effective FF are obtained from the measurements of  $e^+e^- \rightarrow \Omega^-\bar{\Omega}^+$  with data at  $\sqrt{s}=3.49$  - 3.67 GeV.

# EMFFs of the Lightest Charmed Baryon $\Lambda_c$



# The Status of the Baryons EMFFs



19/21

DQC

S=0

S=-1

S=-2

Q=+1

Q=+2

1

 $\Sigma^+$ 

#### Summary

### Summary and Outlook

- BESIII is collecting the world largest  $e^+e^-$  collision data in the  $\tau$  *charm* region,
- Electromagnetic form factors are studied for nucleons, hyperons, charmed-hyperon,
- Many fruitful physics results are obtained for the EMFFs through **direct annihilation and ISR return Methods**,
- Full picture of the hyperon EMFFs can be determined by the benefit of their self-analyzing **polarization** (relative phase of EMFFs),
- Results as strong inputs to understand the structure of baryons: threshold effect, coupling strength ( $\gamma^* N\bar{N}, \gamma^* \Sigma \bar{\Sigma}$ ) and oscillation behavior of residual effective FF,
- Current results are still limited by the low statistics for most of the measurements,
- More results from BESIII are expected soon, including low energy data (below 2 GeV) and 20 fb<sup>-1</sup>  $\psi(3770)$  data for ISR analyses.



### Early Cross Section and Effective FF in Time-Like Region



### Early Measurements of the Proton FFs in Time-Like Region

