



# Recent charmonium decay measurements at BESIII

Xueqiang Yan (IHEP, CAS, China) On behalf of the BESIII Collaboration yanxueqiang@ihep.ac.cn



43rd International Symposium on Physics in Collision (PIC 2024)

Oct 23, 2024, Athens, Greece



- Introduction
- **BESIII** experiment
- Recent new measurements on charmonium decay
  - Study of the  $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda} \phi$  decays
  - Study of the  $\chi_{cJ} \rightarrow \Lambda \bar{\Lambda} \omega$  decays
  - Improved measurements of the branching fraction of  $h_c \rightarrow \gamma \eta / \eta'$  and search for  $h_c \rightarrow \gamma \pi^0$
  - Search for the radiative transition  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$

#### • Summary



#### Charmonium states are located in the transition region of perturbative and non-perturbative QCD



- Theoretical studies indicate that the color octer mechanism may also influence the decays of the \(\chi\_{CJ}\). Intensive measurements of \(\chi\_{CJ}\) hadronic decays are highly desirable to understand the underlying their decay dynamics.
- Excluding the E1 decay  $h_c \rightarrow \gamma \eta_c$ , the sum of the branching fractions of known  $h_c$  decay modes is only about 3%. Study of the radiative decays  $h_c \rightarrow \gamma \eta/\eta'/\pi^0$  are particular desirable as these will provide more direct information on non-perturbative effects in heavy quarkonia.
- Charmonium states were supposed to be well described by nonrelativistic potential quark models. This was case before 2003, since the discovery of the X(3872), also know as  $\chi_{c1}(3872)$ . It cannot be easily accommodated in the charmonium spectrum predicted in quark model. Classifying the charmonium-like structures may lead to insights into the confinement mechanism.
- Provide valuable insights to improve the understanding of the inner charmonium structure and test phenomenological mechanisms of non-perturbative QCD.





Beijing Spectrometer (BESIII)







BESIII is replacing the inner part of the drift chamber with a three layers of CGEM detector, which has now been successfully extracted.

| Muon Detector                  |                   |
|--------------------------------|-------------------|
| No. of layers (barrel/end cap) | 9/8               |
| Cut – off momentum             | 0.4 GeV/ <i>c</i> |





PIC 2024 - Oct 2024



- Study of the  $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda} \phi$  decays
- Study of the  $\chi_{cJ} \rightarrow \Lambda \overline{\Lambda} \omega$  decays
- Improved measurements of the branching fraction of  $h_c \rightarrow \gamma \eta / \eta'$  and search for  $h_c \rightarrow \gamma \pi^0$
- Search for the radiative transition  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$

Study of the  $\chi_{cI} \rightarrow \Lambda \Lambda \phi$  decays

Using about 2.7 billion  $\psi(3686)$  dataset

Search for the  $\chi_{cI} \rightarrow \Lambda \Lambda \phi$  decays through the E1 transition  $\psi(3686) \rightarrow \phi$  $\gamma \chi_{cI}$  and determine the  $\mathcal{B}(\chi_{cI} \to \Lambda \overline{\Lambda} \phi)$ 

Fit to the  $M(\Lambda \overline{\Lambda} \phi)$  at [3.38, 3.60] GeV/ $c^2$  to estimate the contributions.





<u> Phys. Rev. D 110, 032016 (2024)</u>

**—** Total fit

 $\chi_{cI} \rightarrow \Lambda \overline{\Lambda} K^{+} K^{-}$ 

- Data

60

 $-\chi_{cI} \rightarrow \Lambda \overline{\Lambda} \phi$ 

Non- $\chi_{cI}$  radiative background

## Study of the $\chi_{cI} \rightarrow \Lambda \Lambda \omega$ decays



— Combinatorial background

🔶 Data

— Total fit

 $-\chi_{cl} \rightarrow \Lambda \overline{\Lambda} \omega$ 

 $-\chi_{a} \rightarrow \Lambda \overline{\Lambda} \pi^{+} \pi \pi^{0}$ 

ω signal region

ω signal region

200

100

Events / 5 [MeV/c<sup>2</sup>]

Using about 2.7 billion  $\psi(3686)$  dataset

Search for the  $\chi_{cI} \rightarrow \Lambda \overline{\Lambda} \omega$  decays through the E1 transition ( $\psi(3686) \rightarrow \psi(3686)$ )  $\gamma \chi_{cI}$ ) and determine the  $\mathcal{B}(\chi_{cI} \to \Lambda \overline{\Lambda} \omega)$ 

Simultaneous fit to the  $M(\Lambda \overline{\Lambda} \omega)$  at [3.35, 3.60] GeV/ $c^2$  in  $\omega$  signal and



<u> Phys. Rev. D 110, 032022 (2024)</u>

Study of the  $h_c \rightarrow \gamma \eta / \eta' / \pi^0$  decays (1)

Using about 2.7 billion  $\psi(3686)$  dataset

Search for the  $h_c \rightarrow \gamma \eta / \pi^0$  decays through the  $\psi(3686) \rightarrow \pi^0 h_c$ , and determine the  $\mathcal{B}(h_c \to \gamma \eta/\eta')$  and the upper limit of  $\mathcal{B}(h_c \to \gamma \pi^0)$ .

Simultaneous fit to the  $M(\gamma \pi^+ \pi^- \eta)$  and  $M(\gamma \gamma \pi^+ \pi^-)$  at [3.46, 3.56] GeV/ $c^2$ to estimate the  $h_c \rightarrow \gamma \eta'$  contributions.



[1] Phys. Rev. Lett. **116**, 251802 (2016)

Recent charmonium decay measurements at BESIII - Xueqiang Yan





Recent charmonium decay measurements at BESIII - Xueqiang Yan

11

Fit to the  $M(\gamma \pi^0)$  at [3.46 3.56] GeV/ $c^2$  to estimate the  $h_c \rightarrow \gamma \pi^0$  contributions.

An upper limit of  $5.0 \times 10^{-5}$  is set on the  $\mathcal{B}(h_c \to \gamma \pi^0)$  at the 90% confidence level.

Using a profile likelihood fit:

Green solid line: The likelihood distribution incorporating additive systematic uncertainties Red dashed line: Convolution of thelikelihood curve with multiplicative systematic uncertainties

PIC 2024 - Oct 2024





Search for the  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$  decay

Using 15 energy points  $@\sqrt{s} = [4.178, 4.278] \text{GeV} \sim 9 \text{ fb}^{-1}$ 

Search for the radiative transition  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$ , with  $\psi_2(3823) \rightarrow \gamma \chi_{c1}$ .

No  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$  events are found in the  $M(\gamma \psi_2(3823))$  distribution.

$$\mathcal{R}_{\chi_{c1}(3872)} = \frac{N_{obs} - r \cdot N_{obs}^{sdb}}{N_{\pi^+\pi^- J/\psi} \cdot \frac{\epsilon_{\gamma\psi_2(3823)}}{\epsilon_{\pi^+\pi^- J/\psi}} \cdot \mathcal{B}(\chi_{c1} \to \gamma J/\psi)} < 0.075 \quad @90\% \text{ confidence level}$$

More than  $1\sigma$  below the theoretical calculations of  $\mathcal{R}_{\chi_{c1}(3872)}$  under the assumption that the  $\chi_{c1}(3872)$  is the pure charmonium state  $\chi_{c1}(2P)$ .

| $\begin{split} \Gamma_{\chi_{c1}(3872)} &= 1190 \pm 210 \text{ keV}[1] \\ \Gamma_{\psi_2(3823)} &= 520 \pm 100 \text{ keV}[2] \\ \mathcal{B}(\chi_{c1}(3872) \to \pi^+ \pi^- J/\psi) &= (3.8 \pm 1.2) \times 10^{-2}[1] \end{split}$ |               |               |                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|------------------------------|--|--|
| $\Gamma_{\chi_{c1}(2P)\to\gamma\psi(1^{3}D_{2})} \text{ (keV)}$                                                                                                                                                                      | NR [3]<br>35  | GI [3]<br>18  | LQCD [2]                     |  |  |
| $\Gamma_{\psi(1^3D_2) \to \gamma \chi_{c1}(1P)} \text{ (keV)}$                                                                                                                                                                       | 307           | 268           | $337\pm27$                   |  |  |
| $\mathcal{R}_{\chi_{c1}(2P)}$                                                                                                                                                                                                        | $0.46\pm0.19$ | $0.21\pm0.09$ | $0.50\pm 0.21, 0.26\pm 0.11$ |  |  |

Recent charmonium decay measurements at BESIII – Xueqiang Yan

PIC 2024 - Oct 2024





$$\mathcal{R}_{\chi_{c1}(3872)} \equiv \frac{\mathcal{B}(\chi_{c1}(3872) \to \gamma \psi_2(3823), \psi_2(3823) \to \gamma \chi_{c1})}{\mathcal{B}(\chi_{c1}(3872) \to \pi^+ \pi^- J/\psi)}$$

[1]Prog. Theor. Exp. Phys. **2022**, 093C01 (2022) [2]Phys. Rev. D **109**, 014513 (2024) [3]Phys. Rev. D **72**, 054026 (2005)

13

## Summary



- BESIII has achieved significant process in the study of charmonium decay
  - First observation of  $\chi_{c1,2} \to \Lambda \bar{\Lambda} \phi$  and first evidence of  $\chi_{c0} \to \Lambda \bar{\Lambda} \phi$
  - First observation of  $\chi_{cJ} \rightarrow \Lambda \bar{\Lambda} \omega$
  - Improved measurements of  $\mathcal{B}(h_c \to \gamma \eta / \eta')$  and give the upper limit of  $h_c \to \gamma \pi^0$
  - Give the upper limit of  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$
- The largest datasets of  $c\bar{c}$  vector states collected by BESIII provide the power to study the  $\chi_{cJ}(1P)$ ,  $h_c$  states and their decays with unprecedented precision.
- Datasets above the  $D\overline{D}$  threshold shed new light on charmonium-like state decays and hint at possible connections between XYZ states and the conventional charmonium.
- New data sets are currently analysed (~20fb<sup>-1</sup>@ $\psi$ (3770), ~2.7 × 10<sup>9</sup>@ $\psi$ (3686)), much more results will be presented in the future.

## Thanks for your attention!



#### Significance estimation:

The significances of  $\chi_{c1,2} \rightarrow \Lambda \overline{\Lambda} \phi$  are determined by comparing the difference of likelihoods with and without including each signal in the fit.

The significances of  $\chi_{c0} \rightarrow \Lambda \overline{\Lambda} \phi$  are determined by another approach due to the low signal yield. We assume that the number of signal and background events in the  $\chi_{c0}$  signal region follow a Poisson distribution with mean n = s + b, where s = 6 represents the expected number of signal events and b = 0.6 represents the expected number of background events. The *p* value for the null hypothesis without a resonance ( $H_0$ ) is

$$p(n_{obs}) = p(n > n_{obs} | H_0) = \sum_{n > n_{obs}}^{\infty} \frac{b^n}{n!} e^{-b}$$
$$= 1 - \sum_{n=0}^{n_{obs}-1} \frac{b^n}{n!} e^{-b},$$

Where  $n_{obs}$  is the number of events observed in the signal region. The *p* value is obtained by calculating the probability of the number of background events fluctuating to the number of observed events in the  $\chi_{c0}$  signal region. The *p* value is  $3.89 \times 10^{-5}$ , corresponding to a significance of  $4.1\sigma$ . In determining this significances, the systematic uncertainties are accounted for by repeating the fits with variations of the signal shape, background shape, and fit range.



Study of the decays  $\chi_{cI} \rightarrow \Lambda \Lambda \phi$ 



FIG. 1. The 2D distribution of  $M_{\bar{p}\pi^+}$  versus  $M_{p\pi^-}$  of the accepted candidates, where the box in red solid lines is the  $\Lambda\bar{\Lambda}$  signal region, and the boxes in green dashed lines are the sideband regions.



FIG. 2. Fit to the  $M_{K^+K^-}$  distribution of the accepted candidates. The pink arrows show the  $\phi$  signal region, and the pair of green arrows shows the  $\phi$  sideband region.



FIG. 3. Simultaneous fit to the  $M_{\Lambda\Lambda\bar{K}^+K^-}$  distributions in the  $\phi$  (left) signal and (right) sideband regions.  $\frac{\chi_{C2} \rightarrow \Lambda_{V4}}{BODY3 model}$ .

FIG. 4. Invariant-mass distributions of different two-body combinations of the decays of (top row)  $\chi_{c1} \rightarrow \Lambda \bar{\Lambda} \phi$  and (bottom row)  $\chi_{c2} \rightarrow \Lambda \bar{\Lambda} \phi$ . The data are background subtracted. Two MC predictions are shown, one based on the PHSP model, the other on the 17



2.5

2.5





FIG. 2. The distributions of (left)  $M(\bar{p}\pi^+)$  vs  $M(p\pi^-)$  and (right)  $M(\pi^+\pi^-\pi^0)$  of the accepted candidates. In the left figure, the central red box represents the  $\Lambda\bar{\Lambda}$  signal region, the green boxes are the  $\Lambda\bar{\Lambda}$  sideband region 2, and pink boxes are the  $\Lambda\bar{\Lambda}$ sideband region 1. In the right figure, the red dashed line represents the fitted  $\omega$  signal, and the blue dashed line denotes the combinatorial background. The gray line is the total fit. The red arrows denote the  $\omega$  signal region, while the blue arrows denote the  $\omega$  sideband regions.



FIG. 4. Comparisons of  $M(\bar{\Lambda}\omega/\Lambda\omega)$  and  $M(\Lambda\bar{\Lambda})$  of (top)  $\chi_{c0}$ , (middle)  $\chi_{c1}$ , and (bottom)  $\chi_{c2}$ , between the data and individual BODY3 signal MC samples after all event selection criteria have been applied.

#### Study of the decays $h_c \rightarrow \gamma \eta / \eta' / \pi^0$



 $\pi^0 \to \gamma \gamma$ 

 $\eta 
ightarrow \pi^+\pi^-\pi^0$ 

2.0

 $\eta \rightarrow \gamma \gamma$ 





 $\eta' \to \pi^+ \pi^- \gamma$ 

2.0



Table 2. Relative systematic uncertainties (%) on the branching-fraction measurements, categorised by the decay chain used to reconstruct the final state. A dash (-) indicates that the source is not relevant for that decay.

$$\mathcal{R}_{h_c} = \frac{\mathcal{B}(h_c \to \gamma \eta)}{\mathcal{B}(h_c \to \gamma \eta')} = (27.0 \pm 4.4 \pm 1.0)\%$$

 $\eta$  decay mode

Search for the decays  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$ 





## No conclusion until now!

#### M: 3871.65 $\pm$ 0.06 MeV/ $c^2$ $\chi_{c1}$ (3872) $\Gamma$ : 1.19 $\pm$ 0.21 MeV

 $J^{pc} = 1^{++}$ 

[1] Phys. Rev. D 72, 054026 (2005)
[2] Phys. Rep. 429, 243 (2006)
[3] Phys. Rev. D 71, 014028 (2005) 20

Recent charmonium decay measurements at BESIII – Xueqiang Yan

PIC 2024 - Oct 2024

Search for the decays  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$ 



 $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823), \psi_2(3823) \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow \gamma J/\psi, J/\psi \rightarrow \ell^+ \ell^- \ (\ell = e, \mu)$ 



If the  $\chi_{c1}(3872)$  contains a component of the excited spin-triplet state  $\chi_{c1}(2P)$ , the radiative decay  $\chi_{c1}(3872) \rightarrow \gamma \psi_2(3823)$  could happen naturally via an E1 transition [1], where the  $\psi_2(3823)$  is considered as the  $1^3D_2$  charmonium state.

Recent charmonium decay measurements at BESIII – Xueqiang Yan

$$\mathcal{R}_{\chi_{c1}(3872)} = \frac{N_{obs} - r \cdot N_{obs}^{sdb}}{N_{\pi^+\pi^- J/\psi} \cdot \frac{\epsilon_{\gamma\psi_2(3823)}}{\epsilon_{\pi^+\pi^- J/\psi}} \cdot \mathcal{B}(\chi_{c1} \to \gamma J/\psi)} < 0.075$$

 $N_{obs} = 0$  is the number of observed events from all data in the  $\chi_{c1}(3872)$  signal region.

 $N_{obs}^{sdb} = 4$  is the number of observed events in the  $\chi_{c1}(3872)$  sideband region.

r is the background scaling factor.

 $N_{\pi^+\pi^- I/\psi} = 80.7 \pm 9.0$  is taken from the BESIII measurements [1].

| $\begin{aligned} \Gamma_{\chi_{c1}(3872)} &= 1190 \pm 210 \text{ keV}[2] \\ \Gamma_{\psi_2(3823)} &= 520 \pm 100 \text{ keV}[3] \\ \mathcal{B}(\chi_{c1}(3872) \to \pi^+ \pi^- J/\psi) &= (3.8 \pm 1.2) \times 10^{-2}[2] \end{aligned}$ |               |               |                              |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|------------------------------|--|--|
| $\Gamma$ (ap) ((3p) (keV)                                                                                                                                                                                                                | NR [4]        | GI [4]<br>18  | LQCD [3]                     |  |  |
| $\Gamma_{\chi_{c1}(2P) \to \gamma \psi(1^{3}D_{2})} (\text{keV})$<br>$\Gamma_{\psi(1^{3}D_{2}) \to \gamma \chi_{c1}(1P)} (\text{keV})$                                                                                                   | 307           | 268           | $337\pm27$                   |  |  |
| $\mathcal{R}_{\chi_{c1}(2P)}$                                                                                                                                                                                                            | $0.46\pm0.19$ | $0.21\pm0.09$ | $0.50\pm 0.21, 0.26\pm 0.11$ |  |  |

Our result indicates that the  $\chi_{c1}(3872)$  is not a pure  $\chi_{c1}(3872)$  charmonium state.

$$\chi_{c1}(3872)$$
 (1.19 ± 0.21 MeV

Γ is highly dependent on the parametrization of its line shape. This vale is from a global fit to the experimental measurements of the decay mode  $\chi_{c1}(3872) \rightarrow \pi^+\pi^- J/\psi$  which describes its line shape with a BW function.

$$\Gamma_{LHCb}: 0.22^{+0.07+0.11}_{-0.06-0.13} \text{MeV}$$

LHCb studied the  $\chi_{c1}(3872)$  line shape with a Flatté model instead [5] and determined the full width at half maximum of the line shape.

 $\Gamma_{BESIII}^{couple-channel}: 0.44^{+0.13+0.38}_{-0.35-0.25}$ MeV

BESIII performed a couple-channel analysis of the  $\chi_{c1}(3872)$  line shape and reported a FWHM [6], consistent with the LHCb result.



[1] Phys. Rev. Lett. 122, 232002 (20019)
[2] Prog. Theor. Exp. Phys. 2022, 093C01 (2022)
[3] Phys. Rev. D 109, 014513 (2024)
[4] Phys. Rev. D 72, 054026 (2005)
[5] Phys. Rev. D 102, 092005 (2020)
[6] Phys. Rev. Lett. 132, 151903 (2024)





C Luminosity increased by a factor of 3 @2.35 GeV

○ Beam energy up to 2.8 GeV

O Installing now, commissioning on 1<sup>ST</sup>, Jan 2025