

Observation of quantum entanglement in top-quark pair production with the ATLAS detector

Matthew Kingston On behalf of the ATLAS Collaboration

> 2024-10-23 PIC2024

- Produced in huge numbers at the LHC, mainly by gluon-gluon fusion
- Heaviest Standard Model particle, with very short lifetime $\approx 5\times 10^{-25} s$
- Therefore decays $(t \rightarrow Wb)$ before it can hadronise $(\approx 10^{-23}s)$ or undergo spin decorrelation $(\approx 10^{-21}s)$, meaning we can effectively study bare quarks

- 2022 Nobel Prize for Physics awarded for entanglement measurement
- If two particles are entangled, we cannot descibe their states independently
- In the context of a 2 qubit system, (eg 2 spin-1/2 top quarks!!!), can describe the spin density matrix as:

$$\rho = \frac{1}{4} [I_4 + \sum_i (B_i^+ \sigma^i \otimes I_2 + B_i^- I_2 \otimes \sigma^i) + \sum_{i,j} C_{ij} \sigma^i \otimes \sigma^j]$$

where C_{ij} is the spin correlation matrix

- 15 parameters in total, but sufficient entanglement criteria is $\mbox{Tr}[C]{<}-1$ Eur. Phys. J. Plus (2021) 136
- Only recently have we begun to study entanglement in the LHC's high-energy regime

Entanglement

- Considering top decays going to 2 leptons
- Since they decay before hadronisation and spin decorrelation, and because of weak decay's maximum parity violation, spin information of tops is passed onto leptons
- Looking at the leptons in their parents' rest frame, can use a more simple variable:

$$D = \frac{\operatorname{Tr}[C]}{3} = -3 < \cos\phi >$$
$$\frac{1}{\sigma} \frac{d\sigma}{\cos\phi} = \frac{1}{2}(1 - D\cos\phi)$$

• And now using the Peres-Horodecki criterion, we need:

$$D < -\frac{1}{3}$$

Eur. Phys. J. Plus (2021) 136

- Near threshold, majority of pairs produced in spin singlet state, enabling measurement of entanglement
- At higher M_{tt} effect is diluted
- Split events into three:
 - $340 < M_{tt} < 380$ GeV signal region
 - 380 < M_{tt} < 500 GeV validation region
 - $M_{tt} > 500$ GeV validation region

Eur. Phys. J. Plus (2021) 136

- Small M_{tt} window for signal region \rightarrow we need good reconstruction of $t\bar{t}$ system
- Neutrinos particularly difficult
- Three methods used:
 - 85% Ellipse method (right) analytical method finding overlap of two sets of possible p_T^{ν} values
 - 5% Neutrino weighting
 - 10% Only use leptons + jets

Nucl.Instrum.Meth.A 736 (2014) 169-178

Analysis Strategy

- 140fb⁻¹ of 13TeV data used
- Key selections:
 - $-1e \& 1\mu$ with opposite charges, $p_T > 25 - 28 GeV$
 - Single lepton triggers
 - > 2 iets
 - > 1 *b*-tagged jet (85% efficiency)
- Backgrounds:
- tW
- $tt + X (X=H,W,Z). Z \rightarrow \tau\tau$ - VV (V=W,Z)

 - All regions have $t\bar{t}$ purity $\approx 90\%$ and good data/MC agreement

Nature 633 (2024) 542

M. Kingston

Calibration Curve

- Use 'calibration curve' to translate from detector level to particle level D value
- Performed in each *M*_{tt} region using MC samples with expected background contribution subtracted
- Different points created using reweighted samples, assuming different values of D, then interpolating between these.

Nature 633 (2024) 542

M. Kingston

- Can't rewrite quantum physics in MC directly - so need to reweight events appropriately
- At parton level, model D(M_{tt}) as polynomial (so we can preserve linearity of cosφ)
- Then reweight event by $cos\phi$ using:

$$w = rac{1 - D(M_{tt}) \cdot \chi \cdot cos\phi}{1 - D(M_{tt}) \cdot cos\phi}$$

where χ controls the degree of reweighting

- Systematic uncertainties propagated using this method too, each having a separate calibration curve
- Signal modelling by far dominant source, in large part by changing the M_{tt} line shape
- Largest background effect from $Z \rightarrow \tau \tau$, due to its particularly flat $cos\phi$ distribution

Source of uncertainty	$\Delta D_{\text{observed}}(D = -0.537)$	$\Delta D \ [\%]$
Signal modeling	0.017	3.2
Electrons	0.002	0.4
Muons	0.001	0.2
Jets	0.004	0.7
<i>b</i> -tagging	0.002	0.4
Pile-up	< 0.001	< 0.1
$E_{ m T}^{ m miss}$	0.002	0.4
Backgrounds	0.005	0.9
Total statistical uncertainty	0.002	0.3
Total systematic uncertainty	0.019	3.5
Total uncertainty	0.019	3.5

Nature 633 (2024) 542

Results

$$D = -0.537 \pm 0.002$$
 (stat.)
 ± 0.019 (syst.)

Entanglement observed at $> 5\sigma!$

- Highest energy entanglement measurement yet performed
- Quantum information at the LHC is a relatively new and promising field
- Highlights importance of accurate top modelling (eg. potential to include 'toponium' effects)

Backup

Systematic uncertainty source	Relative size (for SM D value)
Top-quark decay	1.6%
Parton distribution function	1.2%
Recoil scheme	1.1%
Final-state radiation	1.1%
Scale uncertainties	1.1%
NNLO QCD + NLO EW reweighting	1.1%
pThard setting	0.8%
Top-quark mass	0.7%
Initial-state radiation	0.2%
Parton shower and hadronization	0.2%
h_{damp} setting	0.1%

Nature 633 (2024) 542

Process	Inclusive		340 - 380 GeV		380 – 500 GeV			> 500 GeV				
tī	1030000	±	40000	202000	±	8000	408000	±	16000	417000	±	17000
tW	59800	±	1100	10330	±	200	23800	±	500	25700	±	500
Z+jets	9100	±	800	2470	±	240	4000	±	400	2620	±	250
WW/WZ/ZZ	5950	±	330	850	±	50	2130	±	120	2960	±	170
$t\bar{t}X$	2959	±	6	437.7	±	2.1	1080.1	±	3.4	1441	±	4
fakes	29000	±	5000	6000	±	1100	11700	±	2100	11700	±	2100
Expectation	1140000	±	40000	220000	±	8100	450000	±	16000	460000	±	17000
Data	1105403			225056			441196			439151		
data/MC	0.97	±	0.03	1.02	±	0.04	0.98	±	0.03	0.95	±	0.04

Nature 633 (2024) 542