

Highlights on top quark physics with the ATLAS experiment at the LHC

PIC2024 - The 43rd International Symposium on Physics in Collision, Athens Emily Hampshire (Royal Holloway, University of London)

Top-quark physics at the ATLAS experiment

- Top quark decays before hadronization and **information about its spin state is preserved** in the distributions of its decay products.
- Top quark mass is key ingredient in EW precision and QCD calculations.
- Top quark couplings to SM bosons and top quark decay products are sensitive to BSM particles.
- Broad program of top-quark physics at the ATLAS experiment.
- Will focus on five recent results:
 - Search for same-charge top-quark pair production in pp collisions at $\sqrt{s} = 13$ TeV (<u>arXiv:2409.14982</u>)
 - Measurement of top-quark pair production in association with charm quarks in proton-proton collisions at $\sqrt{s} = 13$ TeV (arXiv:2409.11305)
 - Measurement of $t\bar{t}$ production in association with additional *b*-jets in the $e\mu$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV (arXiv:2407.13473)
 - Test of lepton flavour universality in W-boson decays into muons and electrons in pp collisions at $\sqrt{s} = 13$ TeV (arXiv:2403.02133)
 - Observation of $t\bar{t}$ production in the lepton+jets and dilepton channels in p+Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV (arXiv:2405.05078)

Search for same-charge top-quark pair production in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector

- Same-charge (same-sign, SS) top pair production (*tt* or *tt*) is strongly suppressed in the SM
 - SS top-quark pair production is forbidden at LO in perturbation theory
- First ATLAS search for SS top-quark pairs using SMEFT with pointlike four-fermion interactions
- Three four-fermion operators are considered:
 - $O_{tu}^{(1)}$, $O_{Qu}^{(1)}$, $O_{Qu}^{(8)}$ with Wilson Coefficients (WCs) $c_{tu}^{(1)} = 0.04$, $c_{Qu}^{(1)} = 0.1$, $c_{Qu}^{(8)} = 0.2$ and new physics energy scale $\Lambda = 1$ TeV
 - Corresponds to cross-sections $\sigma(pp \rightarrow tt) = 97.6 \text{ fb}$ and $\sigma(pp \rightarrow tt) = 2.4 \text{ fb} \rightarrow \text{highly charge asymmetric.}$ Different WCs setups by reweighting.

- Analysis Strategy:
 - Selection: 2 same-charge (SC) leptons, 2 b-jets, missing transverse momentum
 - Full Run 2 pp collisions at $\sqrt{s} = 13$ TeV with 140 fb⁻¹
 - Neural network, NN^{SvsS}, used to discriminate signal events originating from $c_{tu}^{(1)}$ vs $c_{Qu}^{(1)}$ or $c_{Qu}^{(8)}$
 - These are split by lepton charge, ++ or -, due to different kinematics for *tt* and *tt*, and NN^{SvsB} are trained to separate signal and background
 - Signal regions (SRs) additionally required $\Delta \phi_{l,l} \ge 2.5$ and validation region (VRs) $\Delta \phi_{l,l} < 2.5$ to validate the background modelling.
 - Control regions (CRs) used to constrain normalisation of major background processes. Binned profile likelihood fits over SRs and CRs simultaneously.

arXiv:2409.14982

Same-charge top-quark pair production

- Statistically-limited results, largest systematic uncertainty from $t\bar{t}W$ modelling uncertainties.
- Largest background from $t\bar{t}W$ events.
- Good post-fit agreement in CRs and SRs. Results are in agreement with SM
- Observed (expected) upper limit on production cross-section at 95% CL: $\sigma(pp \rightarrow tt) < 1.6~(2.0)~{\rm fb}$
- 1D limits set on WCs by varying single WC at a time, the observed (expected) limits at 95% CL: $c_{tu}^{(1)} < 0.0068 \ (0.0071), c_{Qu}^{(1)} < 0.020 \ (0.022), c_{Qu}^{(8)} < 0.041 \ (0.046)$
- These are most stringent limits on WCs, improving previous limits by factor ≈ 10

	Wilson Coefficient CIs at 95% CL ($\times 10^{-2}$)		
Uncertainties	$c_{tu}^{(1)}$	$c_{Qu}^{(1)}$	$c_{Qu}^{(8)}$
Statistical uncertainty only	[-0.65, 0.65]	[-1.9, 1.9]	[-3.9, 3.9]
Statistical + modeling uncertainties	[-0.67, 0.67]	[-1.9, 1.9]	[-4.0, 4.0]
Total uncertainty	[-0.68, 0.68]	[-2.0, 2.0]	[-4.1, 4.1]

PIC2024 – Highlights on Top Quark Physics at ATLAS

Measurement of top-quark pair production in association with charm quarks in proton—proton collisions at \sqrt{s} = 13 TeV with the ATLAS detector

Inclusive cross-section $t\overline{t}$ + charm jets

- $t\overline{t}$ + heavy-flavour (HF) jets (*c*-jets, *b*-jets) is large irreducible background to many analyses (e.g. $t\overline{t}H$ with $H \rightarrow b\overline{b}$)
- $t\bar{t}$ + HF is **challenging to model** due to scale hierarchy from $t\bar{t}$ production to $b\bar{b}/c\bar{c}$ production from gluon emission.
- Analysis strategy:
 - Single lepton (1L) and dilepton (2L) final states, (e, μ)
 - Simultaneous identification of *b*-jets and *c*-jets utilises custom b/c flavour-tagging algorithm with the WPs:
 - c@11%, c@22% (with b-jet rejection rates 28.7 and 18.9),
 - b@60%, b@70% (with c-jet rejection rates 37.1 and 12.2)
 - Fit in 19 regions (12 control regions, 4 1L signal regions, 3 2L signal regions) using profile likelihood fit
 - POIs: $t\bar{t} \neq 2c$ and $t\bar{t} + 1c$ signal strengths
 - Normalisation factors for $t\bar{t} +\geq 1b$ and $t\bar{t} +$ light are free-floating
 - Measure cross-sections in fiducial phase space and cross-section ratios in more inclusive phase space

Inclusive cross-section $t\bar{t}$ + charm jets

• Fiducial cross-sections

 $\sigma^{\text{fid}}(t\bar{t} +\geq 2c) = 1.28^{+0.16}_{-0.10}(\text{stat})^{\pm 0.21}_{-0.22}(\text{syst}) \text{ pb}$ = $1.28^{+0.27}_{-0.24} \text{ pb}$ $\sigma^{\text{fid}}(t\bar{t} + 1c) = 6.4^{+0.5}_{-0.4}(\text{stat}) \pm 0.8 \text{ (syst) pb}$ = $6.4^{+1.0}_{-0.9} \text{ pb}$

- Largest uncertainties from $t\bar{t} +\geq 1c$ signal modelling, calibration of b/c-tagger, and data statistics.
- NLO+PS predictions for $t\bar{t} + \ge 2c$ and $t\bar{t} + 1c$ cross-sections are largely consistent with measured results but underpredict by 0.5 to 2.0 standard deviations.
- Measured cross-section ratios of $t\bar{t} + \ge 2c$ and $t\bar{t} + 1c$ to total $t\bar{t} + j$ ets production in more inclusive phase space as: $R_{t\bar{t}+\ge 2c}^{\text{inc}} = (1.23 \pm 0.25)\%$ and $R_{t\bar{t}+1c}^{\text{inc}} = (8.8 \pm 1.3)\%$
- These are **in agreement with POWHEG+PYTHIA8 simulations** within 0.9 and 1.1 standard deviations.

Measurement of $t\bar{t}$ production in association with additional *b*-jets in the $e\mu$ final state in proton—proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

arXiv:2407.13473

$t\bar{t}$ + *b*-jets production in $e\mu$ final state

- Analysis strategy:
 - Select OS $e\mu$, ≥ 2 jets, $\geq 2 b$ -jets (DL1r 77% efficiency)
 - Fiducial integrated cross-sections in 4 regions: $e\mu + \ge 3b \mid \ge 4b \mid \ge 3b + \ge 1l/c \mid \ge 4b + \ge 1l/c$
 - Normalised fiducial differential cross-sections
 - After subtracting the estimated background, the data is **unfolded to particle-level** using an iterative Bayesian technique
- A kinematic algorithm is developed for the classification of the origin of *b*-jets (from *tt* or gluon radiation). The probability of correct assignment of a *b*-jet (≥2 *b*-jets), in a given bin, ranges from 50% to 85% (40% to 75%).
- Significant background from mistagged jets in tt
 - light and tt
 - events.
 - To reduce the impact of systematic uncertainties in these backgrounds \rightarrow template fits to data are performed to extract normalisation factors for $t\bar{t}+b$, $t\bar{t}+$ light and $t\bar{t}+c$ at particle-level.
 - The data are found to be **described much better by the predictions after the individual** *ttj* **components are corrected**.

$t\bar{t}$ + *b*-jets production in $e\mu$ final state

- Fiducial cross-section results are dominated by systematic uncertainties, primarily from *b*-tagging, jet energy scale, and $t\bar{t}$ modelling.
- The precision of these results surpasses previous results using partial 13 TeV ATLAS data.
- Differential cross-section results **show good agreement** with predictions for most observables in a quantitative comparison.

Precise test of lepton flavour universality in *W*-boson decays into muons and electrons in *pp* collisions at \sqrt{s} = 13TeV with the ATLAS detector

LFU in W-boson decays to e, μ

- Lepton Flavour Universality (LFU) is fundamental axiom of SM:
 - Couplings of charged leptons to EW gauge bosons are **independent** of the lepton flavour
- Flavour anomalies in *b*-hadron decays hint at **departures from LFU**
- Analysis strategy:
 - Select $t\bar{t}$ events with OS $ee \mid e\mu \mid \mu\mu$ and 1 or 2 *b*-jets
 - Measure ratio (normalised using LEP+SLD measurement of $Z \rightarrow ll$ events to reduce lepton identification uncertainties):

$$R_{WZ}^{\mu/e} = \frac{R_W^{\mu/e}}{\sqrt{R_Z^{\mu\mu/ee}}} = \underbrace{\frac{\mathcal{B}(W \to \mu\nu)}{\mathcal{B}(W \to e\nu)}}_{\mathcal{B}(W \to e\nu)} \cdot \underbrace{\sqrt{\frac{\mathcal{B}(Z \to ee)}{\mathcal{B}(Z \to \mu\mu)}}}_{\mathcal{B}(Z \to \mu\mu)}$$

- Muon reweighting in p_T and η to reduce kinematic differences between e and μ , to minimise physics modelling uncertainties.
- Measurement of lepton isolation efficiencies for $t\bar{t} \rightarrow ll$ and $Z \rightarrow ll$ events and compared to POWHEG+PYTHIA8 and SHERPA simulation samples

LFU in W-boson decays to e, μ

- Simultaneous maximum likelihood fit to $t\bar{t}$ events and $Z \rightarrow ll$ counts with four POIs: $\sigma_{t\bar{t}}, \sigma_{Z \rightarrow ll}, R_{WZ}^{\mu/e}, R_{Z}^{\mu\mu/ee}$
- Yields for $t\bar{t} \rightarrow e\mu$ and $Z \rightarrow ll$ regions, m_{ll} spectrum for $t\bar{t} \rightarrow ee, \mu\mu$ regions.
- The ratios were fitted to be:

 $R_{WZ}^{\mu/e} = 0.9990 \pm 0.0022(\text{stat}) \pm 0.0036(\text{syst})$ $R_7^{\mu\mu/ee} = 0.9913 \pm 0.0002(\text{stat}) \pm 0.0045(\text{syst})$

$$R_{WZ}^{\mu/e} = \frac{R_W^{\mu/e}}{\sqrt{R_Z^{\mu\mu/ee}}} = \frac{\mathcal{B}(W \to \mu\nu)}{\mathcal{B}(W \to e\nu)} \cdot \sqrt{\frac{\mathcal{B}(Z \to ee)}{\mathcal{B}(Z \to \mu\mu)}}$$

Events / GeV

10

10²

Data / Fit 1 022 0.92 1.05 ee. 1b

60

LFU in W-boson decays to e, μ

- The external LEP+SLD measurement of $R_{Z-ext}^{\mu\mu/ee} = 1.0009 \pm 0.0028$
- was used to calculate

 $R_W^{\mu/e} = 0.9995 \pm 0.0022(\text{stat}) \pm 0.0036(\text{syst}) \pm 0.0014(\text{ext})$

 $= 0.9995 \pm 0.0045$

$$=\frac{\mathcal{B}(W\to\mu\nu)}{\mathcal{B}(W\to e\nu)}$$

- **Dominated by systematic uncertainties**: PDF, modelling, lepton uncertainties
- **Consistent with lepton flavour universality** and with previous measurements
- Higher precision than previous world average

Observation of $t\bar{t}$ production in the lepton+jets and dilepton channels in p+Pb collisions at $\sqrt{s_{NN}}$ = 8.16 TeV with the ATLAS detector

$t\bar{t}$ production in p+Pb collisions

- Strongly interacting quark-gluon plasma (QGP) in Pb-Pb collisions
- Pb+Pb collisions differ from *pp* collisions due to **initial-state effects** (parton distribution functions (PDFs)) and **final-state effects** (creation of QGP)
- Gain knowledge of initial state effects using p+Pb collisions
- Use top quarks to probe nuclear PDFs (nPDFs) in kinematic region of Bjorken- $x \sim 5 \cdot 10^{-3} 0.05$ and $Q^2 \sim m_t^2 \sim 3 \cdot 10^4$ GeV²
- Analysis strategy:
 - 165 nb⁻¹ of p+Pb data at $\sqrt{s_{NN}}$ = 8.16 TeV in 2016
 - Define two channels: $1l \ge 4j \ge 1 b$ -jet | $2l \ge 2j \ge 1 b$ -jet $(l = e, \mu)$
 - Split into 2 dilepton SRs and 4 lepton+jets SRs
 - **Binned profile likelihood fit** with POI: $\mu_{t\bar{t}}$ = ratio of observed signal over SM expectation with no nPDF effects.
 - Dilepton channel background **dominated by Z+jets and single top tW events**. Lepton+jets has largest background contributions from **W+jets and fake leptons**.

$t\bar{t}$ production in p+Pb collisions

- Limited by systematic uncertainties in lepton+jets SRs and by statistical uncertainties in dilepton SRs.
- Largest sources of systematic uncertainties from jet energy scale and signal modelling.
- Background-only hypothesis is rejected with a significance of more than 5 standard deviations – observation of tt process in p+Pb collisions by ATLAS
- The inclusive $t\bar{t}$ cross-section is measured:

 $\sigma_{t\bar{t}} = 58.1 \pm 2.0 (\text{stat})^{+4.8}_{-4.4} (\text{syst}) \text{ nb} = 58.1^{+5.2}_{-4.9} (\text{tot}) \text{ nb}$

- Most precise $t\bar{t}$ cross-section measured in nuclear collisions to date
- In agreement with CMS result within 1.4 standard deviations.

$t\bar{t}$ production in p+Pb collisions

- Additionally, measured the **nuclear modification factor**, for the first time at LHC.
- Using measured $t\bar{t}$ cross-section in pp collisions at $\sqrt{s} = 8$ TeV, $\sigma_{t\bar{t}}^{pp}$, and mass number of Pb nucleus, A_{Pb} =208, this is defined as:

$$R_{pA} = \frac{\sigma_{t\bar{t}}^{p+Pb}}{A_{Pb} \cdot \sigma_{t\bar{t}}^{pp}}$$

 $= 1.090 \pm 0.039(\text{stat})^{+0.094}_{-0.087}(\text{syst}) = 1.090 \pm 0.100(\text{tot})$

- Systematics-limited
- Consistent with unity within uncertainties and good agreement with predicted values.

Summary

- Same-charge top-quark pair production (<u>arXiv:2409.14982</u>):
 - Placed upper limit on $\sigma(pp \rightarrow tt)$ and most stringent limits on WCs, **improving previous limits by factor** \approx 10
- Inclusive cross-section $t\bar{t}$ + charm jets (arXiv:2409.11305)
 - Measured tt
 +≥ 2c and tt
 + 1c fiducial cross-sections that are largely consistent with NLO+PS predictions (NLO+PS underpredict by 0.5 to 2.0 standard deviations) and ratio of cross-sections that are in agreement with POWHEG+PYTHIA8 simulations within 0.9 and 1.1 standard deviations.
- $t\bar{t}$ + *b*-jets production in $e\mu$ final state (<u>arXiv:2407.13473</u>)
 - Integrated cross section measurements are **consistent with** $t\bar{t}b\bar{b}$ **predictions** within the uncertainties of the predictions.
- LFU in W-boson decays to e, μ (arXiv:2403.02133)
 - Results consistent with LFU and higher precision results than previous world average.
- $t\bar{t}$ production in p+Pb collisions (arXiv:2405.05078)
 - Observation of $t\bar{t}$ process in p+Pb collisions by ATLAS with most precise $t\bar{t}$ cross-section measured in nuclear collisions to date

Thanks!

Highlights on top quark physics with the ATLAS experiment at the LHC C EXPERIMENT Run: 313100 Event: 168745611 2016-11-18 22:14:23

- Three four-fermion operators are considered:
 - $O_{tu}^{(1)} = [\bar{t}_R \gamma^\mu u_R] [\bar{t}_R \gamma_\mu u_R]$
 - $O_{Qu}^{(1)} = [\bar{Q}_L \gamma^\mu q_L] [\bar{t}_R \gamma_\mu u_R]$
 - $O_{Qu}^{(8)} = [\bar{Q}_L \gamma^\mu T^A q_L] [\bar{t}_R \gamma_\mu T^A u_R]$
 - Where Q_L and t_R are the left-handed doublet and right-handed singlet of the third quark generation, q_L and u_R are related to the first two generations and T^A is the generator of SU(3)_C
 - Effective lagrangian:

$$\mathcal{L}_{D=6}^{qq \to tt} = \frac{1}{\Lambda^2} \Big(c_{tu}^{(1)} O_{tu}^{(1)} + c_{Qu}^{(1)} O_{Qu}^{(1)} + c_{Qu}^{(8)} O_{Qu}^{(8)} \Big) + h.c.$$

• with Wilson Coefficients (WCs) $c_{tu}^{(1)} = 0.04$, $c_{Qu}^{(1)} = 0.1$, $c_{Qu}^{(8)} = 0.2$ and new physics energy scale $\Lambda = 1$ TeV

- Corresponds to cross-sections $\sigma(pp \rightarrow tt) = 97.6$ fb and $\sigma(pp \rightarrow t\overline{t}) = 2.4$ fb \rightarrow highly charge asymmetric (tt production approx. 40 times larger).
- *tt* events are produced by pairs of up or charm quarks (uu,uc,cc) while *tt* events are produced via anti-up or anti-charm quarks (*uu*, *uc*, *cc*) for the chosen EFT operators.
- The proton PDFs for reasonably high x, the ratio between up vs anti-up and anti-charm is of the order $\sim 20-30$

- NN^{SvsS} aim to discriminate between $c_{tu}^{(1)}$ vs $c_{0u}^{(1)}$ or $c_{0u}^{(8)}$
 - No further split between $c_{Qu}^{(1)}$ and $c_{Qu}^{(8)}$ due similarity in kinematic properties.
- Only trained on signal events
- Two signal samples used for training:
 - $c_{tu}^{(1)} = 0.04, c_{Qu}^{(1)} = 0, c_{Qu}^{(8)} = 0$
 - $c_{tu}^{(1)} = 0, c_{Qu}^{(1)} = 0.1, c_{Qu}^{(8)} = 0.2$
- Simple DNN with 5 hidden layers
- Using odd/even cross-validation
- 9 input variables $(\Delta \phi_{l,l}, \Delta R_{l,l}, \Delta \eta_{l,l})$ invariant mass of two-lepton system, scalar sum of the p_T of all jets, scalar sum of the p_T of all leptons, the p_T of the leading jet, E_T^{miss} , and the transverse mass of the combined lepton and E_T^{miss} system).
- Classification efficiency of 65% for both categories at 0.538 cut value on NN output
- The efficiency times acceptance values for signal events that enter the SRtu and SR_{Qu} regions are 26.8% and 12.4% for signal events that originate from the $O^{(1)}_{tu}$ operator, and 15.8% and 19.5% for tu signal events that originate from the O_{ou} operators.

- NN^{SvsB} (aim to discriminate signal from background) has 6 kinematic quantities as input variables (sum of the p_T of all leptons, *b*-tagging score of leading and sub-leading p_T jets, p_T of leading jet, transverse mass of leptons and E_T^{miss} system, and number of jets in the event). Output used in profile likelihood fit for SRs.
- ttW has a known excess over theoretical predictions (that is in agreement with the <u>ATLAS ttW cross-section measurement</u>) – this background normalisation is therefore constrained in data.
 - Output of NN^{SvsB} is enriched in ttW events, especially in the first bins
 - Used for ttW normalisation
- Normalisations of other backgrounds from simulations, highest order perturbation theory calculations or from dedicated CRs

Same-charge top-quark pair pro

• 9 CRs:

- 5 dilepton CRs enriched in HF e or mu fakes, orthogonal due to N_{b-tags} and lepton isolation requirements
- 4 three-lepton CRs ttZ CR, diboson CR, photon conversion CRs, orthogonal due to requiring 3 leptons (electrons/muons)
- Good post-fit agreement in the CRs
- Normalisations of major bkg constrained by CRs
- For larger bkg, additional modelling uncertainties by comparing nominal MC with alternative sample
- All normalisations are in agreement with the SM, except ttW – this has a known excess that is in agreement with the <u>ATLAS ttW cross-section measurement</u>

 Definitions of CRs 			CR HF TM	CR HF MT	CR HF MM
		$p_{\rm T}^{\rm lep}$ [GeV] BDT WPs (same-sign ℓ pair)		>20 TM MT	
		N _{jets}		≥2	
		$N_{b-\text{tagged jets}}$		1 at 77%	
		Total lepton charge		++ or	
		$m_T(\text{all } \ell, E_T^{\text{miss}})$	< 250) GeV	-
	VV CR	$t\bar{t}Z$ CR	CR Int	t Conv CR Ma	t Conv
$p_{\rm T}^{\rm lep}$ [GeV]		> 20 (SS pair), >	10 (OS)		
BDT WPs	$M_{\rm inc}M_{\rm inc}$ (SS pair) $L_{\rm inc}$ (OS)				
Total charge		±1			
Electron Conv. candidate		-	Int. C	Conv. Mat. (Conv.
$N_{ m jets}$	2 or 3	≥ 4		≥ 0	
$N_{b-tagged jets}$	1 <i>b</i> -tagged j	et at 60% WP $\parallel \ge 2 b$ -tagged jets at 7	7% WP	P 0 at 77%	
$ m_{SFOS} - m_Z $		< 10 GeV	> 10 GeV		
$ m(\ell\ell\ell) - m_Z $	-	-	< 10 GeV		

• CR yields - dilepton CRs

Process	CR HF μ TM	CR HF μ MT	$CR HF\mu MM$	CR HFe TM	CR HFe MM
tŦW	24.0 ± 4.9	10.3 ± 2.0	3.73 ± 0.87	15.1 ± 2.9	2.76 ± 0.59
$t\bar{t}(Z/\gamma*)$	13.6 ± 2.1	6.20 ± 0.97	2.59 ± 0.47	8.4 ± 1.7	1.90 ± 0.32
tĪH	6.6 ± 4.0	3.2 ± 1.9	1.28 ± 0.79	4.1 ± 2.4	0.90 ± 0.58
Four top	0.113 ± 0.028	0.071 ± 0.017	0.046 ± 0.012	0.069 ± 0.019	0.036 ± 0.010
Diboson	11.9 ± 6.1	4.9 ± 2.5	2.2 ± 1.1	8.6 ± 4.4	1.35 ± 0.72
HFe	1.6 ± 1.1	5.9 ± 2.9	1.71 ± 0.97	37 ±12	4.5 ± 1.6
${ m HF}\mu$	80 ± 14	21.9 ± 5.6	13.8 ± 3.2	2.20 ± 0.66	3.62 ± 0.99
Mat Conv	2.0 ± 7.1	1.20 ± 0.56	1.62 ± 0.51	3.7 ± 2.1	1.38 ± 0.43
Int Conv	0.68 ± 0.41	1.7 ± 1.0	0.30 ± 0.18	5.5 ± 3.2	0.48 ± 0.30
QMisID	0.28 ± 0.13	0.75 ± 0.54	0.38 ± 0.26	5.2 ± 2.9	1.6 ± 1.0
Other	5.6 ± 1.5	2.71 ± 0.66	0.81 ± 0.21	4.2 ± 1.0	0.63 ± 0.16
Total Bkg.	147 ± 12	59.0 ± 5.1	28.4 ± 3.4	94.4 ± 9.2	19.1 ± 2.2
Data	150	57	28	95	19

• CR yields - three-lepton CRs

Process	CR Int Conv	CR Mat Conv	CR ttZ	CR VV
$t\bar{t}W$	_	_	8.4 ± 1.8	24.5 ± 4.7
$t\bar{t}(Z/\gamma*)$	_	_	378 ± 32	230 ± 27
tĪH	_	_	10.0 ± 6.3	6.3 ± 4.0
Four top	_	_	1.61 ± 0.32	0.092 ± 0.020
Diboson	0.025 ± 0.019	1.34 ± 0.72	29 ± 15	90 ± 45
HFe	_	_	0.47 ± 0.35	9.2 ± 6.8
${ m HF}\mu$	_	_	1.04 ± 0.35	7.5 ± 1.8
Mat Conv	1.3 ± 1.1	37.6 ± 8.6	$0.59 ~\pm~ 0.40$	$2.19 ~\pm~ 0.77$
Int Conv	42.5 ± 6.8	15.6 ± 4.3	$0.14 ~\pm~ 0.15$	1.66 ± 0.96
QMisID	_	—	0.22 ± 0.17	0.83 ± 0.41
Other	_	_	74 ± 23	218 ± 40
Total Bkg.	43.9 ± 6.6	54.6 ± 7.3	503 ± 22	590 ± 23
Data	44	55	494	605

• SRs yields

Process	SR _{ctu++}	SR _{ctu}	SR_{cQu++}	SR_{cQu}
tŦW	114 ± 15	62 ± 10	110 ± 15	56.9 ± 9.0
$t\bar{t}(Z/\gamma*)$	25.5 ± 2.4	24.1 ± 2.6	19.5 ± 1.8	19.1 ± 1.8
tŦH	12.4 ± 7.5	12.3 ± 7.1	15.1 ± 9.6	15.1 ± 9.2
Four top	0.72 ± 0.15	0.69 ± 0.14	4.16 ± 0.83	4.07 ± 0.82
Diboson	18.1 ± 9.3	15.9 ± 8.1	6.3 ± 3.2	4.2 ± 2.1
HFe	6.5 ± 2.9	7.6 ± 3.0	3.0 ± 1.1	4.9 ± 2.5
$\mathrm{HF}\mu$	12.6 ± 2.7	15.7 ± 3.2	6.3 ± 1.8	5.7 ± 1.7
Mat Conv	7.6 ± 2.5	5.5 ± 1.6	2.73 ± 0.83	3.3 ± 1.2
Int Conv	2.7 ± 1.6	3.0 ± 1.7	2.1 ± 1.2	2.7 ± 1.6
QMisID	8.1 ± 2.2	8.1 ± 2.2	1.48 ± 0.39	1.48 ± 0.39
Other	20.3 ± 5.4	13.3 ± 3.9	9.3 ± 2.7	7.0 ± 2.6
Total Bkg.	228 ± 11	167.7 ± 7.9	180 ± 10	124.5 ± 6.3
Data	230	162	181	123

arXiv:2409.14982

Same-charge top-quark pair product

• Merged SR+VR

• Observed lower limits at 95% CL on scale of new physics, Afor WC values 0.001, 1, $4\pi^2$

$c_i = 0.01, 1, 4\pi^2$	Same-sign top - Individual limits	ATLAS	Following arXiv:1802.07237 Dimension 6 operators $\tilde{c}_i \equiv c_i / \Lambda^2$		
		$1/\sqrt{ar{c}_{tu}^{(1)}}$	Search for same-sign lepton pairs [1] $t\bar{t}$ + jet energy asymmetry [2] $t\bar{t}$ rapidity asymmetry [4] $t\bar{t}Z$ diff. cross section [5] This result	8 TeV, 20.3 fb ⁻¹ 13 TeV, 139 fb ⁻¹ 13 TeV, 139 fb ⁻¹ 13 TeV, 139 fb ⁻¹ 13 TeV, 140 fb ⁻¹	
		$1/\sqrt{ ilde{c}_{Qu}^{(8)}}$	Search for same-sign lepton pairs [1] $t\bar{t}$ all-hadronic boosted [3] $t\bar{t}$ rapidity asymmetry [4] $t\bar{t}Z$ diff. cross section [5] This result	8 TeV, 20.3 fb ⁻¹ 13 TeV, 139 fb ⁻¹ 13 TeV, 139 fb ⁻¹ 13 TeV, 140 fb ⁻¹ 13 TeV, 140 fb ⁻¹	
		$1/\sqrt{ ilde{c}_{Qu}^{(1)}}$	Search for same-sign lepton pairs [1] $t\bar{t}$ rapidity asymmetry [4] $t\bar{t}Z$ diff. cross section [5] This result	8 TeV, 20.3 fb ⁻¹ 13 TeV, 139 fb ⁻¹ 13 TeV, 140 fb ⁻¹ 13 TeV, 140 fb ⁻¹	
[1] JHEP 10 (2015) 150 [2] EPJC 82 (2022) 374	[3] JHEP 04 (2023) 80 [4] JHEP 08 (2023) 077	[5] JHEP 07 (2024) 163			
10 ⁰	10 ¹ ۸ 95% CL exclusion [TeV]	10 ²			

• 2D limits for combinations of WCs

Inclusive cross-section $t\bar{t}$ + charm jets

- Previous measurements
- tt+charm measurement by CMS in 2020
 - Uses 41.5 fb⁻¹ of Run 2 data
 - Measured $t\bar{t} + c\bar{c}$ but did not explicitly measure $t\bar{t} + c/C$ cross-section
 - Showed agreement with NLO+PS MC predictions within one to two st dev of measurement uncertainties
- $t\bar{t} + b\bar{b}$, $t\bar{t}H(H \rightarrow b\bar{b})$ and $t\bar{t}t\bar{t}$ measurements determine the $t\bar{t} + \ge 1c$ normalisation in situ through a free parameter in the fit and recent results report this normalisation factor to be larger than MC predictions <u>arXiv:2407.10904</u>
- Event preselection
- 1L channel:
 - 1 charged lepton (e or μ)
 - \geq 5 jets, \geq 3 b/c-tagged (b@77% or c@22%)
 - Split into regions with 5 and \geq 6 jets
- 2L channel:
 - 2 charged leptons ($e \text{ or } \mu$), opposite charge,
 - \geq 3 jets, \geq 2 b/c-tagged
 - Veto lepton pairs with m_{ll} < 15 GeV and close to Z-mass window
 - Split into regions with 3 and \geq 4 jets
- Ratio measured in phase-space volume without requirements on the $t\bar{t}$ decay products and the jet multiplicity

- The ATLAS DL1r tagger outputs probabilities for the jet flavours: p_b , p_c , p_{light} which is reoptimized as a 2D binned discriminant the b/c tagger
- Axes of discriminant, D_c and D_b are calculated as weighted likelihood ratio of p_b , p_c , p_{light} following the Neyman-Pearson lemma:

$$D_c = \log \frac{p_c}{f_b p_b + (1 - f_b) p_{\text{light}}}$$

• f_b , f_c control which background contributes more to the decision. It was found that $f_b = 0.4$ and $f_c =$ 0.018 provide good performance for the b/c-tagger

• The b/c-tagger at 5 WPs (including untagged bin dominated by light jets)

	Efficiency	<i>c</i> -jet rejection	light-jet rejection	\mathcal{D}_b'	\mathcal{D}_c'
b@60% b@70%	60.3% 70.0%	37.1 12.2	2320 573	≥0.990 ≥0.963	<0.625 <0.625
	Efficiency	<i>b</i> -jet rejection	light-jet rejection	\mathcal{D}_b'	\mathcal{D}_{c}^{\prime}

- CRs and SRs
 - 1L channel has additional c-quarks from W-boson decay

	$ CR_1^{l\ell}$	$CR_2^{l\ell}$	$CR_3^{l\ell}$	$SR_{loose}^{l\ell}$	$SR_{tight}^{l\ell}$	$ CR_1^{2\ell}$	$CR_2^{2\ell}$	$CR_3^{2\ell}$	$SR_{loose}^{2\ell}$	$ $ SR ^{2ℓ} tight
N _{jets}			= 5 or	≥ 6			= 3	or ≥ 4		≥ 4
<i>b</i> @70%	2	_	_	2	2	2	_	≥ 3	2	2
b@60%	-	≥ 3	3	_	_	_	≥ 3	≤ 2	_	_
c@22%	1	0	1	≥ 2	_	0	_	_	1	≥ 2
<i>c</i> @11%	1	—	1	1	≥ 2	_	—	—	—	_

Uncertainties on cross-sections	Uncertainty group	Fractional unce	ertainty [%] on
		$\sigma^{\rm fid}(t\bar{t}+\ge 2c)$	$\sigma^{\rm fid}(t\bar{t}+1c)$
	$t\bar{t} + \ge 1c \text{ modeling}$	9	8
	Background modeling:		
	$t\bar{t} + \ge 1b$	4	4
	$t\bar{t} + light$	6	4
	Others	2.5	1.7
	Instrumental:		
	<i>b</i> -tagging	2.2	1.8
	<i>c</i> -tagging	9	4
	light mis-tagging	2.2	3.4
	JES/JER	6	3.5
	Others	1.3	0.9
	MC statistics	3.1	2.5
	Total systematic uncertainty	17	12
	Data statistical uncertainty	11	7
	Total	20	14

•

 Cross-section comparisons to MC simulations 		Measured	$t\overline{t}$ or $t\overline{t} + b\overline{b}$ Powheg+Pythia8
	$\sigma^{\text{fid}}(t\bar{t} + \ge 1b) \text{ [pb]}$	3.46 ± 0.24	3.2 ± 1.6
	$\sigma^{\text{fid}}(t\bar{t} + \ge 2c) \text{ [pb]}$	1.28 ± 0.25	1.04 ± 0.18
	$\sigma^{\rm fid}(t\bar{t}+1c)$ [pb]	6.4 ± 0.9	5.1 ± 0.8
	$\sigma^{\text{inc}}(t\bar{t} + \ge 1b) \text{ [pb]}$	13.0 ± 0.9	12 ± 4
	$\sigma^{\text{inc}}(t\bar{t} + \ge 2c) \text{ [pb]}$	5.4 ± 1.1	4.4 ± 0.7
	$\sigma^{\rm inc}(t\bar{t}+1c)$ [pb]	38 ± 6	31 ± 4
	$R_{t\bar{t}+>1b}^{\text{fid}}$ [%]	7.2 ± 0.4	6.5 ± 3.3
	$R_{t\bar{t}+>2c}^{\text{fid}}$ [%]	2.7 ± 0.5	2.1 ± 0.4
	$R_{t\bar{t}+1c}^{\text{fid}}$ [%]	13.7 ± 1.8	10.3 ± 1.6
	$R_{t\bar{t}+\geq 1b}^{\mathrm{inc}}$ [%]	3.14 ± 0.23	2.6 ± 0.8
	$R_{t\bar{t}+\geq 2c}^{\text{inc}}$ [%]	1.23 ± 0.25	0.97 ± 0.16
	$R_{t\bar{t}+1c}^{\text{inc}}$ [%]	8.8 ± 1.3	6.9 ± 1.0

• CRs and SRs regions post-fit

arXiv:2409.11305

Inclusive cross-sect[®] 220 220 ATLAS 200 Vs = 13 TeV, 140 fb⁻¹ Data tt+≥2c GeV 600F ___tt+≥1b Events / 50 GeV tt+1c ATLAS 2200 Data tt+≥2c ATLAS Data tt+≥2c SR^{2/4ji} Post-Fit Other Top / 50 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ tt+light tt+1c tt+≥1b 180 √s = 13 TeV, 140 fb tt+1c tt+≥1b 2000 Non-Top 🔲 Fakes SR^{1/5j}loose Other Top tt+light 500 SR^{1/5j} Post-Fit tt+light Other Top 160 1800⊢ Post-Fit Non-Top 📃 Fakes /// Uncertainty Non-Top Fakes Щ К Ш 140 Uncertainty 1600 Uncertainty 400 120 1400 100 1200 • SRs regions post-fit 300 80 1000 60 800 200 4(600 400 20 100 200 Data / Pred. 1.05 Data / Pred. 1.05 Data / Pred. 0.95 1.05 0.9[[] 0.95 0.95 0.9^E N_{jets} 50 100 150 200 250 300 0.9^E 0 m^{min∆R} [GeV] 50 100 150 200 250 300 m^{min∆R} [GeV] Events 0006 Events 4000⊢ ATLAS Data tt+≥2c ATLAS Data tt+≥2c 50 GeV $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ tt+1c tt+≥1b Events $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ ltt+≥1b tt+1c **ATLAS** √s = 13 TeV, 140 fb⁻¹ Data tt+≥2c 1400**⊢** *ATLAS* 2500 3500 SR^{1/6ji}loose Data tt+≥2c Other Top tt+light SR^{2ℓ4ji}loose Other Top tt+light tt+1c tt+≥1b √s = 13 TeV, 140 fb⁻¹ tt+≥1b tt+1c Non-Top Fakes 7000 SR^{2/3j} Post-Fit Other Top Non-Top Fakes tt+light Post-Fit SR^{1/6ji} tt+light Other Top 3000 Non-Top Fakes **W** Uncertainty Post-Fit 1200 /// Uncertainty 2000 Post-Fit Non-Top Fakes 6000 /// Uncertainty **W** Uncertainty 2500 1000 5000 1500 2000 800 4000 1500 1000 600 3000 1000 400 2000 500 500 1000 200 Data / Pred. Data / Pred. 50.1 Pred. 56.0 1.05 Data / Pred. Data / Pred. 1.05 1.05 0.95 0.9^E 0 0.95 0.95 300 50 100 150 200 250 0.9^t 0.9[[] m^{min∆R} [GeV] 0.9[|] 6 7 8 9 6 7 8 9 4 5 6 7 N_{jets} N_{jets} N_{jets}

Measured vs predicted cross-sections

	$t\bar{t} + \ge 2c \text{ [pb]}$	$t\bar{t} + 1c$ [pb]	$t\bar{t} + \ge 1b$ [pb]	$t\bar{t}$ + light [pb]	$t\bar{t}$ + jets [pb]
tt Powheg+Pythia 8	1.04 ± 0.18	5.1 ± 0.8	3.2 ± 0.5	40 ± 6	50 ± 7
$t\bar{t}$ Powheg+Pythia 8, $h_{damp} = 3 m_t$	1.12 ± 0.16	5.4 ± 0.7	3.3 ± 0.5	41 ± 5	51 ± 7
$t\bar{t}$ Powheg+Pythia 8, $p_{\rm T}^{\rm hard} = 1$	1.05 ± 0.18	5.2 ± 0.8	3.1 ± 0.5	40 ± 6	50 ± 7
$t\bar{t}$ Powheg+Herwig 7	0.94 ± 0.16	4.2 ± 0.7	3.3 ± 0.5	43 ± 6	52 ± 8
$t\bar{t}$ MadGraph5_aMC@NLO+Herwig7	0.74 ± 0.19	4.0 ± 0.8	2.7 ± 0.6	46 ± 8	53 ± 10
$t\bar{t} + b\bar{b}$ Powheg+Pythia 8		_	3.2 ± 1.6		_
$t\bar{t} + b\bar{b}$ Powheg+Pythia 8, $p_{T}^{hard} = 1$	—		2.8 ± 1.3		—
$t\bar{t} + b\bar{b}$ Powheg+Pythia 8, $h_{bzd} = 2$	_		3.1 ± 1.5		_
$t\bar{t} + b\bar{b}$ Powheg+Pythia 8, dipole recoil	_		3.0 ± 1.4		_
$t\bar{t} + b\bar{b}$ Powheg+Herwig 7	_		3.1 ± 1.6		—
$t\overline{t} + b\overline{b}$ Sherpa 2.2.10			3.5 ± 1.0		
Data	1.28 ± 0.25	6.4 ± 0.9	3.46 ± 0.24	36.0 ± 1.8	47.1 ± 2.3

• Post-fit yields

	$CR_1^{l\ell 5j}$	$CR_1^{l\ell 6ji}$	$CR_2^{l\ell 5j}$	$CR_2^{l\ell 6ji}$	$CR_3^{1\ell 5j}$	$CR_3^{l\ell 6ji}$
$t\bar{t} + \ge 2c$	2300 ± 500	5000 ± 800	470 ± 110	1000 ± 190	47 ± 10	140 ± 21
$t\bar{t} + 1c$	12100 ± 1900	13400 ± 1600	2900 ± 400	3500 ± 400	149 ± 16	209 ± 23
$t\bar{t} + \ge 1b$	6000 ± 330	6800 ± 330	16900 ± 700	24400 ± 900	980 ± 40	2050 ± 80
$t\bar{t} + light$	43600 ± 1900	26700 ± 1600	6460 ± 320	4020 ± 330	50 ± 11	34 ± 15
Other Top	2800 ± 600	2400 ± 500	1700 ± 400	2400 ± 600	80 ± 22	200 ± 60
Non-Top	1100 ± 400	930 ± 350	720 ± 260	750 ± 280	20 ± 8	34 ± 13
Fakes	1200 ± 600	1200 ± 500	1200 ± 500	1200 ± 500	32 ± 18	71 ± 35
Total	69170 ± 280	56310 ± 260	30350 ± 190	37200 ± 210	1360 ± 29	2740 ± 40
Data	69136	56277	30 388	37 209	1345	2728
	$CR_1^{2\ell 3j}$	$CR_1^{2\ell 4ji}$	$CR_2^{2\ell 3j}$	$CR_2^{2\ell 4ji}$	$CR_3^{2\ell 3j}$	$CR_3^{2\ell 4ji}$
$t\bar{t} + \ge 2c$	$CR_1^{2\ell 3j}$ 1130 ± 270	$CR_1^{2\ell 4ji}$ 3600 ± 800	$\frac{CR_2^{2\ell 3j}}{21 \pm 5}$	$\frac{CR_2^{2\ell 4ji}}{168 \pm 34}$	$CR_3^{2\ell 3j}$ 62 ± 14	$CR_3^{2\ell 4ji}$ 520 ± 90
$t\bar{t} + \ge 2c$ $t\bar{t} + 1c$	$CR_{1}^{2\ell 3j}$ 1130 ± 270 14500 ± 1800	$CR_{1}^{2\ell 4ji}$ 3600 ± 800 18900 ± 2300	$CR_2^{2\ell 3j}$ 21 ± 5 307 ± 33	$CR_2^{2\ell 4ji}$ 168 ± 34 560 ± 50	$CR_3^{2\ell 3j}$ 62 ± 14 810 ± 80	$ CR_3^{2\ell 4ji} 520 \pm 90 1420 \pm 140 $
$ \begin{array}{r} t\bar{t} + \geq 2c \\ t\bar{t} + 1c \\ t\bar{t} + \geq 1b \end{array} $	$\frac{CR_{1}^{2\ell 3j}}{1130 \pm 270}$ 14 500 ± 1800 8500 ± 800	$CR_{1}^{2\ell 4ji}$ 3600 ± 800 18 900 ± 2300 8900 ± 600	$ CR_2^{2\ell 3j} 21 \pm 5 307 \pm 33 2130 \pm 70 $	$ CR_2^{2\ell 4ji} \\ 168 \pm 34 \\ 560 \pm 50 \\ 5330 \pm 160 $	$ CR_3^{2\ell 3j} \\ 62 \pm 14 \\ 810 \pm 80 \\ 1260 \pm 60 $	$CR_{3}^{2\ell 4ji}$ 520 ± 90 1420 ± 140 2740 ± 120
$ \begin{array}{r} t\bar{t} + \geq 2c \\ t\bar{t} + 1c \\ t\bar{t} + \geq 1b \\ t\bar{t} + \text{light} \end{array} $	$\frac{CR_1^{2\ell 3j}}{1130 \pm 270}$ 14500 \pm 1800 8500 \pm 800 175100 \pm 2700	$CR_{1}^{2\ell 4ji}$ 3600 ± 800 18 900 ± 2300 8900 ± 600 111 000 ± 2700	$ CR_2^{2\ell_3 j} 21 \pm 5 307 \pm 33 2130 \pm 70 75 \pm 10 $	$CR_{2}^{2\ell 4ji}$ 168 ± 34 560 ± 50 5330 ± 160 117 ± 20	$ CR_3^{2\ell 3j} 62 \pm 14 810 \pm 80 1260 \pm 60 320 \pm 40 $	$CR_{3}^{2\ell 4ji}$ 520 ± 90 1420 ± 140 2740 ± 120 500 ± 70
$ \frac{t\bar{t} + \geq 2c}{t\bar{t} + 1c} \\ t\bar{t} + \geq 1b \\ t\bar{t} + \text{light} \\ \text{Other Top} $	$\frac{CR_1^{2\ell 3j}}{1130 \pm 270}$ 14500 \pm 1800 8500 \pm 800 175100 \pm 2700 6800 \pm 1200	$CR_{1}^{2\ell 4ji}$ 3600 ± 800 18 900 ± 2300 8900 ± 600 111 000 ± 2700 5100 ± 1100	$ CR_2^{2\ell_3 j} 21 \pm 5 307 \pm 33 2130 \pm 70 75 \pm 10 94 \pm 29 $	$\frac{CR_2^{2\ell 4ji}}{168 \pm 34}$ 560 ± 50 5330 ± 160 117 ± 20 390 ± 110	$ CR_3^{2\ell 3j} 62 \pm 14 810 \pm 80 1260 \pm 60 320 \pm 40 84 \pm 20 $	$CR_{3}^{2\ell 4ji}$ 520 ± 90 1420 ± 140 2740 ± 120 500 ± 70 260 ± 60
$t\bar{t} + \ge 2c$ $t\bar{t} + 1c$ $t\bar{t} + \ge 1b$ $t\bar{t} + \text{light}$ Other Top Non-Top	$CR_{1}^{2\ell 3j}$ 1130 ± 270 14 500 ± 1800 8500 ± 800 175 100 ± 2700 6800 ± 1200 5000 ± 1700	$CR_{1}^{2\ell 4ji}$ 3600 ± 800 18 900 ± 2300 8900 ± 600 111 000 ± 2700 5100 ± 1100 3400 ± 1100	$ CR_2^{2\ell 3j} 21 \pm 5 307 \pm 33 2130 \pm 70 75 \pm 10 94 \pm 29 53 \pm 18 $	$CR_{2}^{2\ell 4ji}$ 168 ± 34 560 ± 50 5330 ± 160 117 ± 20 390 ± 110 105 ± 35	$CR_{3}^{2\ell 3j}$ 62 ± 14 810 ± 80 1260 ± 60 320 ± 40 84 ± 20 61 ± 22	$CR_{3}^{2\ell 4ji}$ 520 ± 90 1420 ± 140 2740 ± 120 500 ± 70 260 ± 60 110 ± 40
$ \frac{t\bar{t} + \geq 2c}{t\bar{t} + 1c} \\ \frac{t\bar{t} + \geq 1b}{t\bar{t} + \text{light}} \\ \text{Other Top} \\ \text{Non-Top} \\ \text{Fakes} $	$\frac{CR_1^{2\ell 3j}}{1130 \pm 270}$ 14500 ± 1800 8500 ± 800 175100 ± 2700 6800 ± 1200 5000 ± 1700 2100 ± 500	$CR_{1}^{2\ell 4ji}$ 3600 ± 800 18 900 ± 2300 8900 ± 600 111 000 ± 2700 5100 ± 1100 3400 ± 1100 2000 ± 500	$CR_{2}^{2\ell 3j}$ 21 ± 5 307 ± 33 2130 ± 70 75 ± 10 94 ± 29 53 ± 18 17 ± 4	$CR_{2}^{2\ell 4ji}$ 168 ± 34 560 ± 50 5330 ± 160 117 ± 20 390 ± 110 105 ± 35 75 ± 19	$CR_{3}^{2\ell 3j}$ 62 ± 14 810 ± 80 1260 ± 60 320 ± 40 84 ± 20 61 ± 22 20 ± 5	$CR_{3}^{2\ell 4ji}$ 520 ± 90 1420 ± 140 2740 ± 120 500 ± 70 260 ± 60 110 ± 40 76 ± 19
$ \frac{t\bar{t} + \ge 2c}{t\bar{t} + 1c} \\ \frac{t\bar{t} + \ge 1b}{t\bar{t} + \text{light}} \\ \text{Other Top} \\ \text{Non-Top} \\ \text{Fakes} \\ \text{Total} $	$CR_1^{2\ell 3j}$ 1130 ± 270 14 500 ± 1800 8500 ± 800 175 100 ± 2700 6800 ± 1200 5000 ± 1700 2100 ± 500 213 200 ± 500	$CR_{1}^{2\ell 4ji}$ 3600 ± 800 18 900 ± 2300 8900 ± 600 111 000 ± 2700 5100 ± 1100 3400 ± 1100 2000 ± 500 152 900 ± 400	$CR_{2}^{2\ell 3j}$ 21 ± 5 307 ± 33 2130 ± 70 75 ± 10 94 ± 29 53 ± 18 17 ± 4 2700 ± 50	$CR_{2}^{2\ell 4ji}$ 168 ± 34 560 ± 50 5330 ± 160 117 ± 20 390 ± 110 105 ± 35 75 ± 19 6750 ± 80	$CR_{3}^{2\ell 3j}$ 62 ± 14 810 ± 80 1260 ± 60 320 ± 40 84 ± 20 61 ± 22 20 ± 5 2620 ± 40	$CR_{3}^{2\ell 4ji}$ 520 ± 90 1420 ± 140 2740 ± 120 500 ± 70 260 ± 60 110 ± 40 76 ± 19 5630 ± 70

• Post-fit yields

	SR ^{2ℓ3j} loose	SR ^{2ℓ4ji} loose	$SR_{loose}^{l\ell 5j}$	SR ^{1ℓ6ji} loose	$SR_{tight}^{2\ell 4ji}$	$SR_{tight}^{1\ell 5j}$	SR ^{1ℓ6ji} tight
$t\bar{t} + \ge 2c$	190 ± 40	1350 ± 220	280 ± 50	960 ± 140	159 ± 22	144 ± 26	470 ± 70
$t\overline{t} + 1c$	1910 ± 180	3270 ± 330	850 ± 90	1300 ± 150	54 ± 8	347 ± 32	510 ± 60
$t\bar{t} + \ge 1b$	830 ± 40	1710 ± 70	450 ± 26	810 ± 50	77 ± 5	220 ± 13	425 ± 22
$t\bar{t} + light$	1720 ± 160	2540 ± 250	1120 ± 90	1020 ± 140	17 ± 5	134 ± 28	127 ± 34
Other Top	160 ± 40	420 ± 80	130 ± 40	230 ± 50	22 ± 6	42 ± 9	87 ± 24
Non-Top	150 ± 50	240 ± 80	54 ± 20	78 ± 30	8 ± 3	14 ± 5	25 ± 9
Fakes	57 ± 14	160 ± 40	64 ± 32	70 ± 40	6 ± 2	8 ± 6	39 ± 20
Total	5020 ± 60	9710 ± 90	2940 ± 50	4460 ± 60	343 ± 16	910 ± 24	1683 ± 35
Data	5015	9668	2976	4443	340	913	1705

- Nuisance parameter ranking
- $\sigma^{\text{fid}}(t\bar{t} +\geq 2c)$

- Nuisance parameter ranking
- $R_{t\bar{t}+\geq 2c}^{\text{fid}}$

- Previous Results
 - Previous ATLAS measurements of $t\bar{t}$ +b-jets all found the MC simulations to underpredict the measured results <u>arXiV:1304.6386</u>, <u>arXiv:1508.06868</u>, <u>arXiv:1811.12113</u>
 - Recent $t\overline{t}b\overline{b}$ measurements by CMS Collaboration in semileptonic decay channel using the full 13 TeV data sample, found the data exceeded the predictions of several MC simulations <u>arXiv:2309.14442</u>

MC sample	Generator	Process	Parton shower	Matching/ Parton shower settings	Tune	Use
Powheg+Pythia8	Powheg Box v2	tĩ NLO	Рутніа 8.230	$\begin{array}{l} \mbox{Powheg} \\ h_{\rm damp} = 1.5 m_{\rm top} \\ p_{\rm T}^{\rm hard} = 0 \\ \mbox{globalRecoil} \\ \mbox{recoilToColoured=ON} \end{array}$	A14	nom.
Powheg+Pythia8 h_{damp}	Powheg Box v2	tī NLO	Рутніа 8.230	Powheg $h_{damp} = 3m_{top}$	A14	syst.
Powheg+Pythia8 $p_{\rm T}^{\rm hard}$	Powheg Box v2	tī NLO	Рутніа 8.230	POWHEG $p_{T}^{hard} = 1$	A14	syst.
Роwнес+Рутніа8 RecoilToTop	Powneg Box v2	tī NLO	Рутніа 8.230	Powneg recoilToTop	A14	syst.
Powheg+Herwig 7	Powheg Box v2	tī NLO	Herwig 7.1.3	Powheg	H7.1-Default	syst.
Powheg+Pythia8 dipole	Powheg Box v2	tī NLO	Рутніа 8.230	Роwнед dipoleRecoil on	A14	comp.
MadGraph5_aMC@NLO+Pythia8	MadGraph5_ aMC@NLO v2.6.0	tī NLO	Рутніа 8.230	MC@NLO	A14	comp.
MadGraph5_aMC@NLO+Herwig7	MadGraph5_ aMC@NLO v2.6.0	tī NLO	Herwig 7.1.3	MC@NLO	H7.1-Default	comp.
Sherpa	Sherpa 2.2.12	$t\bar{t}$ +0,1 parton at NLO +2,3,4 parton at LO	Sherpa	MePs@Nlo	Author's tune	comp.
Powheg+Pythia8 $t\bar{t}b\bar{b}$	Powheg Box Res	tībb NLO	Рутніа 8.230	Powheg Box Res $h_{bzd}=5$ $p_{T}^{hard} = 0$ globalRecoil	A14	comp.
Powheg+Pythia8 $t\bar{t}b\bar{b}$ $p_{\rm T}^{\rm hard}$	Powheg Box Res	tībb NLO	Рутніа 8.230	Powheg Box Res $p_{\rm T}^{\rm hard} = 1$	A14	comp.
Powheg+Pythia8 $t\bar{t}b\bar{b}$ $h_{\rm bzd}$	Powneg Box Res	$t\bar{t}b\bar{b}$ NLO	Рутніа 8.230	Powheg Box Res $h_{bzd}=2$	A14	comp.
Powheg+Pythia8 $t\bar{t}b\bar{b}$ dipole	Powneg Box Res	tībb NLO	Рутніа 8.230	Powheg Box Res $h_{bzd}=2$ dipoleRecoil on	A14	comp.
Powheg+Herwig 7 $t\bar{t}b\bar{b}$	Powheg Box Res	$t\bar{t}b\bar{b}$ NLO	Herwig 7.1.6	Powheg Box Res	H7.1-Default	comp.
Sherpa $t\bar{t}b\bar{b}$	Sherpa 2.2.10	$t\bar{t}b\bar{b}$ NLO	Sherpa	MEPs@NLO	Author's tune	comp.
HELAC-NLO (off-shell)	Helac-NLO	$e\mu + 4b$ NLO	-	-	-	comp.

Observable	Description	1	H	Phase space	es	
	1	$\geq 2b$	$\geq 3b$	$ \geq 3b$	$\geq 4b$	$\geq 4b$
				$\geq 1l/c$		$\geq 1l/c$
$\sigma^{ m fid}$	Fiducial total cross-section		\checkmark	~	\checkmark	~
N _{b-iets}	Number of <i>b</i> -jets	\checkmark	\checkmark			
$N_{l/c-iets}$	Number of light- or <i>c</i> -jets		\checkmark		\checkmark	
$H_{\rm T}^{\rm had}$	Scalar sum of $p_{\rm T}$ of all jets		\checkmark		\checkmark	
$H_{\rm T}^{\rm all}$	Scalar sum of $p_{\rm T}$ of charged leptons, jet and missing $E_{\rm T}$		\checkmark		\checkmark	
ΔR_{avg}^{bb}	Average angular distance in ΔR of <i>b</i> -jet pairs		\checkmark		\checkmark	
$\Delta \eta_{\max}^{jj}$	Maximum absolute difference in η between any pair of jets		\checkmark		\checkmark	
$p_{\mathrm{T}}(b_1)$	$p_{\rm T}$ of the hardest <i>b</i> -jet		\checkmark		\checkmark	
$p_{\mathrm{T}}(b_2)$	$p_{\rm T}$ of second-hardest <i>b</i> -jet		\checkmark		\checkmark	
$p_{\mathrm{T}}(b_3)$	$p_{\rm T}$ of third-hardest <i>b</i> -jet		\checkmark		\checkmark	
$p_{\mathrm{T}}(b_4)$	$p_{\rm T}$ of fourth-hardest <i>b</i> -jet				\checkmark	
$\eta(b_1)$	η of hardest <i>b</i> -jet		\checkmark		\checkmark	
$\eta(b_2)$	η of second-hardest <i>b</i> -jet		\checkmark		\checkmark	
$\eta(b_3)$	η of third-hardest <i>b</i> -jet		\checkmark		\checkmark	
$\eta(b_4)$	η of fourth-hardest <i>b</i> -jet				\checkmark	
$p_{\rm T}(l/c\text{-jet}_1)$	$p_{\rm T}$ of the hardest light- or <i>c</i> -jet			\checkmark		\checkmark
$\eta(l/c\text{-jet}_1)$	η of the hardest light- or <i>c</i> -jet			\checkmark		\checkmark
$m(b_1b_2)$	Invariant mass of two hardest <i>b</i> -jets in $p_{\rm T}$		\checkmark		\checkmark	
$\Delta R(b_1, b_2)$	ΔR between two hardest <i>b</i> -jets		\checkmark		\checkmark	
$p_{\rm T}(b_1b_2)$	$p_{\rm T}$ of two hardest <i>b</i> -jets		\checkmark		~	
$m(bb^{\min \Delta R})$	Invariant mass of two closest <i>b</i> -jets in ΔR				<i>√</i>	
$p_{\rm T}(bb^{\min\Delta K})$	$p_{\rm T}$ of the closest <i>b</i> -jets pair				\checkmark	
$\min \Delta R(bb)$	Closest angular distance in ΔR among <i>b</i> -jets				√.	
$m(e\mu b_1b_2)$	Invariant mass of electron, muon and two hardest <i>b</i> -jets		\checkmark		\checkmark	
$p_{\rm T}(b_1^{\rm top})$	$p_{\rm T}$ of the hardest <i>b</i> -jet assigned to top quark		\checkmark		\checkmark	
$p_{\rm T}(b_2^{\rm top})$	$p_{\rm T}$ of the second-hardest <i>b</i> -jet assigned to top quark		\checkmark		\checkmark	
$p_{\rm T}(b_1^{\rm add})$	$p_{\rm T}$ of the hardest additional <i>b</i> -jet		\checkmark		\checkmark	
$p_{\rm T}(b_2^{\rm add})$	$p_{\rm T}$ of the second-hardest additional <i>b</i> -jet				\checkmark	
$\eta(b_1^{top})$	η of the hardest <i>b</i> -jet assigned to top quark		\checkmark		\checkmark	
$\eta(b_2^{\text{top}})$	η of the second-hardest <i>b</i> -jet assigned to top quark		\checkmark		\checkmark	
$\eta(b_1^{\overline{a}dd})$	η of the hardest additional <i>b</i> -jet		\checkmark		\checkmark	
$\eta(b_2^{add})$	η of the second-hardest additional <i>b</i> -jet				\checkmark	
$m(bb^{top})$	Invariant mass of a pair of <i>b</i> -jets assigned to top quarks		\checkmark		\checkmark	
$p_{\rm T}(bb^{\rm top})$	$p_{\rm T}$ of a pair of <i>b</i> -jets assigned to top quarks		\checkmark		\checkmark	
$m(bb^{add})$	Invariant mass of a pair of additional <i>b</i> -jets				\checkmark	
$p_{\rm T}(bb^{\rm add})$	$p_{\rm T}$ of a pair of additional <i>b</i> -jets				√	
$m(e\mu b b^{top})$	Invariant mass of $e\mu$ and the <i>b</i> -jets pair assigned to top quarks		√		√	
$\Delta R(e\mu bb^{top}, b_1^{add})$	ΔR between the direction of the system of $e\mu$		\checkmark		\checkmark	
	and b -jet pair assigned to top and the direction of the hardest additional b -jet					
$\Delta R(e \mu b b^{wp}, l/c\text{-jet}_1)$	ΔK between the direction of the system of $e\mu$,		,
an add	and <i>b</i> -jet pair assigned to top and the direction of the hardest light- or c -jet			 ✓ 		 ✓
$p_{\mathrm{T}}(l/c\text{-jet}_1) - p_{\mathrm{T}}(b_1^{\mathrm{add}})$	Difference in $p_{\rm T}$ between the hardest l/c -jet and the additional b-jet			\checkmark		\checkmark

- Template fit for mistagged jets in $t\bar{t}$ +light and $t\bar{t}$ +c events two fits are performed:
 - Global fit:
 - fitting normalisation factors for $t\bar{t}$ +b, $t\bar{t}$ +c, $t\bar{t}$ +l templates in the inclusive region
 - Nominal approach to correct the normalisation of individual $t\bar{t}j$ components
 - Kinematic-dependent fit:
 - fitting normalisation factors in the specific regions depending on overall jet multiplicity and pT ranges of 3rd hardest jet in the reconstructed events
 - Used to evaluate systematic uncertainties due to shape effects of $t\bar{t}c$ and $t\bar{t}l$ background

Detector level event selection:

- Exactly one electron and one muon OS, p_T > 28 GeV, $|\eta|$ < 2.5, $m_{e\mu}$ > 15 GeV to reject low-mass τ
- ≥ 2 jets, $p_T > 25$ GeV, $|\eta| < 2.5$
- $\geq 2 b$ -jets, DL1r at 77% efficiency WP

	Inclusive region	Regions in terms of jet multiplicity and third-highest- p_{T} jet- p_{T}					
	Global approach	Kinematic-dependent approach					
	(nominal)	(system	matic)				
Category	$\geq 3j \geq 2b@77\%$	$3j \ge 2b@77\%$	$\geq 4j \geq 2b@77\%$				
	$\geq 25 \text{ GeV}$	$25-35 \text{ GeV} \mid 35-50 \text{ GeV} \mid \ge 50 \text{ GeV}$	$25-50 \text{ GeV} \mid 50-75 \text{ GeV} \mid \ge 75 \text{ GeV}$				
tīb	\geq 3 <i>b</i> -jets	\geq 3 <i>b</i> -jets	_				
$t\bar{t}b_{\rm ex}$	—	-	exactly 3 <i>b</i> -jets				
tītbb	_	_	$\geq 4 b$ -jets				
tīc	$< 3 b$ -jets and $\geq 1 c$ -jet	$< 3 b$ -jets and $\geq 1 c$ -jet	$< 3 b$ -jets and $\geq 1 c$ -jet				
tīl	events that do not meet	events that do not meet	events that do not meet				
	above criteria	above criteria	above criteria				

	Fitted values of scale factors				Туре	
Regions	α_b^s	$\alpha_{b\mathrm{ex}}^{s}$	$lpha_{bb}^s$	α_c^s	α_l^s	
$\geq 3j \geq 2b; \geq 25 \text{ GeV}$	1.20 ± 0.03	_	_	1.62 ± 0.09	0.92 ± 0.04	Global
$3j \ge 2b; (25-35) \text{ GeV}$	1.40 ± 0.15	_	_	1.99 ± 0.42	0.98 ± 0.08	
$3j \ge 2b;$ (35–50) GeV	1.30 ± 0.11	—	—	1.74 ± 0.27	0.77 ± 0.11	
$3j \ge 2b; \ge 50 \text{ GeV}$	1.26 ± 0.12	_	_	1.05 ± 0.27	1.09 ± 0.15	Kinematic-
$\geq 4j \geq 2b;$ (25–50) GeV	_	1.31 ± 0.10	1.15 ± 0.14	1.93 ± 0.11	0.92 ± 0.01	dependent
$\geq 4j \geq 2b; (50-75) \text{ GeV}$	_	1.10 ± 0.09	1.20 ± 0.10	1.64 ± 0.09	0.86 ± 0.01	
$\geq 4j \geq 2b; \geq 75 \text{ GeV}$	—	1.10 ± 0.10	1.09 ± 0.10	1.25 ± 0.10	0.83 ± 0.02	

- An algorithm is developed for the classification of the origin of *b*-jets (from $t\bar{t}$ or gluon radiation).
- All possible permutations of *b*-jets, the one with the minimal -ln(w) is chosen, and the first two b-jets are assigned to top quarks

$$-\ln w = \begin{cases} \left(\Delta R_{\ell 1b1} - \Delta R_{\ell 1b}^{\min}\right)^{2} + \left(\Delta R_{\ell 2b2} - \Delta R_{\ell 2b}^{\min}\right)^{2} + \left(\max(\Delta R_{b1b3}, \Delta R_{b2b3}) - \Delta R_{bb}^{\max}\right)^{2} & \text{if } N_{b\text{-jets}} = 3, \\ \left(\Delta R_{\ell 1b1} - \Delta R_{\ell 1b}^{\min}\right)^{2} + \left(\Delta R_{\ell 2b2} - \Delta R_{\ell 2b}^{\min}\right)^{2} + \left(\Delta R_{b3b4} - \Delta R_{bb}^{\min}\right)^{2} & \text{if } N_{b\text{-jets}} \ge 4, \end{cases}$$

- The algorithm correctly assigns 53% (56%) of b-jets in tt events with at least 3 (4) jets
- By selecting the leading pT b-jets, the fraction of correctly assigned b-jets is 42% (27%)

			Fiducial cross	-sections [ft	b]
 Fiducial cross-sections 	Fiducial phase space	$\geq 3b$	$\geq 3b \geq 1l/c$	$\geq 4b$	$\geq 4b \geq 1l/c$
		143	87	22	14
	Measured	± 1 (stat)	± 1 (stat)	± 1 (stat)	± 1 (stat)
		± 12 (syst)	± 8 (syst)	± 3 (syst)	± 2 (syst)
	Powheg+Pythia 8 $t\bar{t}b\bar{b}$ (4FS)	132	78	23	14
	Powheg+Pythia 8 $t\bar{t}b\bar{b}$ h_{bzd} (4FS)	129	74	21	13
	Powheg+Pythia 8 $t\bar{t}b\bar{b}$ dipole (4FS)	128	71	22	13
	Powheg+Pythia 8 $t\bar{t}b\bar{b}$ p_{T}^{hard} (4FS)	129	68	21	12
	Powheg+Herwig 7 $t\bar{t}b\bar{b}$ (4FS)	130	77	22	14
	Sherpa $t\bar{t}b\bar{b}$ (4FS)	135	90	21	15
	HELAC-NLO (off-shell) $e\mu + 4b$	_	_	20	_
	Powheg+Pythia 8 $t\bar{t}$ (5FS)	120	74	18	11
	Powheg+Herwig 7 $t\bar{t}$ (5FS)	128	75	18	11
	MG5_AMC@NLO+Pythia8 $t\bar{t}$ (5FS)	122	72	18	11
	MadGraph5_aMC@NLO+Herwig7 $t\bar{t}$ (5FS)	110	66	13	8
	Sherpa 2.2.12 $t\bar{t}$ (5FS)	124	73	16	10

• Fiducial cross-sections systematics

Source	Fiducial cross-section phase space									
	$\geq 3b$	$\geq 3b \geq 1l/c$	$\geq 4b$	$\geq 4b \geq 1l/c$						
	Unc. [%]	Unc. [%]	Unc. [%]	Unc. [%]						
Data statistical uncertainty	1.0	1.2	3.9	4.8						
Luminosity	0.8	0.8	0.8	0.8						
Jet	3.4	5.2	6.6	8.5						
<i>b</i> -tagging	5.1	4.9	6.5	6.4						
Lepton and trigger	1.4	1.4	1.2	1.2						
Pile-up	0.9	0.7	0.6	0.3						
$t\bar{t}c/t\bar{t}l$ fit variation	1.7	1.7	0.8	0.8						
$t\bar{t}c/t\bar{t}l$ shape variation	0.2	0.5	0.3	1.6						
$t\bar{t}H/t\bar{t}V$ and non- $t\bar{t}$ background	1.1	1.1	2.2	2.4						
Detector+background total syst.	6.7	7.6	9.7	11.2						
Parton shower and hadronisation	2.9	3.5	1.5	3.6						
$\mu_{\rm R}$ and $\mu_{\rm F}$ scale variations	0.7	0.6	0.2	0.3						
Matrix element matching (p_{T}^{hard})	1.3	1.1	4.8	7.0						
$h_{ m damp}$	1.8	1.5	2.9	3.2						
ISR	0.1	0.4	0.2	0.3						
FSR	3.1	3.6	3.3	3.1						
RecoilToTop	1.8	1.9	2.4	3.4						
PDF	0.2	0.2	0.1	0.1						
NNLO reweighting	0.6	0.5	0.5	0.5						
MC statistical uncertainty	0.2	0.2	0.5	0.6						
$t\bar{t}$ modelling total syst.	5.2	5.7	7.2	9.7						
Total syst.	8.5	9.6	12.1	14.8						
Total	8.5	9.6	12.7	15.5						

• Differential cross-section in 3j3b

	ATLAS		\sqrt{s} =13 TeV, 140 fb ⁻¹
		Powheg+Pythia8 tłbb Sherpa tłbb Powheg+Herwig7 tłbb Powheg+Pythia8	Powheg+Herwig7 MC5_aMC@NLO+Pythia8 MC5_aMC@NLO+Herwig7 Sherpa
$\sigma_{\rm fid} (\geq 3b)$	• ** * • =		
$\sigma_{\rm fid} (\geq 3b \geq 1//c)$	v 👐 + + = =		
$N_{b-jets}, \geq 3b$	v n	٠ .	* *
$N_{l/c-jets}$, $\geq 3b$		v * *	• =
$H_{\rm T}^{\rm had}, \geq 3b$		v = *=	
$H_{\rm T}^{\rm all}, \geq 3b$			• • •
$\Delta R_{avg}^{bb}, \geq 3b$		* *	
$\Delta \eta_{\max}^{ij}, \geq 3b$		+	
$m(e\mu b_1b_2), \ge 3b$			(2 # = +
$m(e\mu bb^{top}), \geq 3b$	•	B * B	+) = x
$p_{T}(b_1), \geq 3b$		▼★	
$p_{\mathrm{T}}(b_2), \geq 3b$	▼		+ +
$p_{T}(b_3), \geq 3b$	v • • •	* = • *	
$p_{T}(b_1^{\mathrm{top}}), \geq 3b$	•	• *	
$p_{\rm T}(b_2^{\rm top}), \geq 3b$	▼	• • • •	
$p_{T}(b_1^{\mathrm{add}}), \geq 3b$	v	* = (
$ \eta(b_1) , \geq 3b$			• • * * * •
$ \eta(b_2) , \geq 3b$	+ III+)	v	
$ \eta(b_3) , \geq 3b$		• • •	
$ \eta(b_1^{\text{top}}) , \ge 3b$		**) v	
$ \eta(b_2^{\text{top}}) , \ge 3b$	v		*
$ \eta(b_1^{\mathrm{add}}) , \ge 3b$	v		•
$\Delta R(b_1, b_2), \geq 3b$		v B B	* = • •
$m(b_1b_2), \geq 3b$	▼	*	• • • •
$m(bb^{top}), \geq 3b$	v	*	
$p_{\mathrm{T}}(b_1b_2), \geq 3b$		*	1 4
$p_{T}(bb^{\mathrm{top}}), \geq 3b$		•	VII 📫
$\Delta R(e\mu bb^{top}, b_1^{add}), \geq 3b$	v	• *	(= + =
$\Delta R(e\mu bb^{top}, l/c-jet_1), \geq 3b \geq 1/c$	B V 4 B E	+	
$p_{T}(l/c\text{-jet}_1), \ge 3b \ge 1/c$	* • •	= = v +	•
$ \eta(l/c-jet_1) , \ge 3b \ge 1/c$			 * (+7
$p_{T}(l/c\text{-jet}_{1}) - p_{T}(b_{1}^{add}), \ge 3b \ge 1/c$) v ≡ +		
0	.0 0.2	0.4 0.6	0.8 1.0
-		p-values	

	7112/10	
	Powhe	eq+Pythia8 ttbb A Powheq+Herwig7
	- Charme	a třbh
	Sherpa	MC5 aMC@NLO+Herwio7
	Powhe	sg+Herwig/ ttbb Sherpa
	Helac-	NLO (ott-shell)
	* Powne	eg+Pythia8
$\sigma_{\rm fid} (\geq 4b)$	/ • * \$	
$\sigma_{\rm fid} (\geq 4b \geq 1l/c)$	⊻±∳≝★	
$N_{l/c-jets}, \geq 4b$		18 + 18 · · · · · · · · · · · · · · · · · ·
$H_{\rm T}^{\rm had}, \geq 4b$		■ ▼ ★ ♦■ # #
$H_{\rm T}^{\rm all}, \geq 4b$		+ V H H + + H +
$\Delta R_{\text{avg}}^{bb}, \geq 4b$	* •	
$\Delta \eta_{\max}^{jj}, \geq 4b$		* * = = =/
$m(e\mu b_1b_2), \geq 4b$		* •••
$m(e\mu bb^{top}), \geq 4b$	•	v m + m ++
$p_{\mathrm{T}}(b_1) \ge 4b$		* • • • • • • •
$p_{T}(b_{2}) > 4b$		
$p_1(22) = 40$ $p_2(b_2) > 4b$	• •	
$p_{1}(b_{3}) = 4b_{1}$		
$p_T(b_4), \ge 4b$	· · · · · · · · · · · · · · · · · · ·	
$p_{\uparrow}(b_1), \ge 4b$		
$p_{\rm T}(b_2), \ge 4b$	•	
$p_{\mathrm{T}}(b_1^{\mathrm{add}}), \geq 4b$		
$p_{\mathrm{T}}(b_2^{\mathrm{add}}), \geq 4b$		<u>*</u>
$ \eta(b_1) , \geq 4b$	▼ ■ ●) 📲 📫 🔶
$ \eta(b_2) , \geq 4b$		ST
$ \eta(b_3) , \geq 4b$		V #128
$ \eta(b_4) , \geq 4b$		10 II II / III
$ \eta(b_1^{top}) , \ge 4b$		* * V
$ \eta(b_2^{top}) , \ge 4b$		■ 300 ★ ▼
$ \eta(b_1^{\text{add}}) , \ge 4b$		■★ ■> ■▼ ■ ■ ◆
$ \eta(b_2^{\mathrm{add}}) , \geq 4b$	***	
$\Delta R(b_1, b_2) \ge 4b$		
$m(b_1b_2) \ge 4b$		
$m(bb^{top}) \ge 4b$		
$p_{T}(b_{1}, b_{2}) > 4b$		
$p_{\tau}(b_{1}b_{2}), = 4b$		
$p_1(bb)$, $= 4b$ min $AB(bb) > 4b$		
$m(bb^{min\Delta}) > 4b$	-	
$(bbmin\Delta R) = 4b$	· · · · · · · · · · · · · · · · · · ·	
$p_{\mathrm{T}}(bb^{\mathrm{max}}), \geq 4b$		
$m(bb^{add}), \geq 4b$	V	
$p_{\rm T}(bb^{\rm aud}), \ge 4b$		V B B # + + +
$\Delta R(e\mu bb^{top}, b_1^{aud}), \geq 4b$	*	
$\Delta R(e\mu bb^{top}, l/c-jet_1), \geq 4b \geq 1l/c$		* ** * ** * *
$p_{\mathrm{T}}(l/c\text{-jet}_1), \ge 4b \ge 1l/c$	•	
$ \eta(l/c-jet_1) , \ge 4b \ge 1l/c$		■■ ★ ■) V ●
$p_{T}(l/c\text{-jet}_{1}) - p_{T}(b_{1}^{add}), \ge 4b \ge 1/c$	♦ ★	
·	0 02 0	4 0.6 0.8 1
0	.0 0.2 0.	n-values
		p values

 \sqrt{s} =13 TeV, 140 fb⁻¹

ATLAS

• Pseudorapidity distribution of leptons in MC simulation with at least one b-jet

• Object and event selection

Object selection							
Electrons	$p_{\rm T} > 27.3 \text{GeV}, \eta < 1.37 \text{ or } 1.52 < \eta < 2.47$						
Muons	$p_{\rm T} > 27.3 {\rm GeV}, \eta < 2.5$	5					
b-tagged jets	$p_{\rm T} > 30.0 \text{GeV}, \eta < 2.5, b$ -tagging DL1r 70%						
Event selection	$t\bar{t} \rightarrow \ell\ell b\bar{b} v\bar{v}$	$Z \to \ell \ell$					
Dilepton flavour $(\ell^+\ell^-)$	ee, eµ, µµ	ee, µµ					
Dilepton invariant mass	$m_{\ell\ell} > 30 \mathrm{GeV}$	$66\mathrm{GeV} < m_{\ell\ell} < 116\mathrm{GeV}$					
<i>b</i> -tagged jet multiplicity	1 or 2	_					

• Measurement of lepton isolation efficiencies – for $t\bar{t} \rightarrow ll$ events and compared to POWHEG+PYTHIA8 simulation samples

• Measurement of lepton isolation efficiencies – for $Z \rightarrow ll$ events and compared to POWHEG+PYTHIA8 and SHERPA simulation samples

arXiv:2403.02133

LFU in W-boson decays to e, μ

- The result for $R_{WZ}^{\mu/e}$ is changed by less that 0.01% when the first m_{ll} bin is removed from the fit
- Mismodelling in first bin consistent between ee and $\mu\mu$ (next slide)

- The result for $R_{WZ}^{\mu/e}$ is changed by less that 0.01% when the first m_{ll} bin is removed from the fit
- Mismodelling in first bin consistent between ee and $\mu\mu$

• Statistical and systematic uncertainties

 $\begin{aligned} \sigma_{t\bar{t}} &= 809.5 \pm 1.1 \pm 20.1 \pm 7.5 \pm 1.9 \, \mathrm{pb} \,, \\ \sigma_{Z \to \ell \ell} &= 2019.4 \pm 0.2 \pm 20.7 \pm 16.8 \pm 1.8 \, \mathrm{pb} \,, \end{aligned}$

• Uncertainties from data statistics, systematics, integrated luminosity, LHC beam energy, respectively.

$$\sigma_{Z \to \ell \ell}^{\text{fid}} = 774.7 \pm 0.1 \pm 1.8 \pm 6.4 \pm 0.7 \, \text{pb}$$
.

Uncertainty [%]	$\sigma_{t\bar{t}}$	$\sigma_{Z \to \ell \ell}$	$R_{WZ}^{\mu/e}$	$R_Z^{\mu\mu/ee}$
Data statistics	0.13	0.01	0.22	0.02
$t\bar{t}$ modelling	1.68	0.03	0.10	0.00
Top-quark $p_{\rm T}$ modelling	1.42	0.00	0.06	0.00
Parton distribution functions	0.67	0.68	0.15	0.03
Single-top modelling	0.65	0.00	0.05	0.00
Single-top/tt interference	0.54	0.00	0.09	0.00
Z(+jets) modelling	0.06	0.73	0.13	0.20
Diboson modelling	0.05	0.04	0.01	0.00
Electron energy scale/resolution	0.05	0.06	0.10	0.11
Electron identification	0.10	0.07	0.04	0.13
Electron charge misidentification	0.06	0.06	0.01	0.13
Electron isolation	0.09	0.02	0.08	0.04
Muon momentum scale/resolution	0.04	0.02	0.06	0.04
Muon identification	0.18	0.12	0.11	0.23
Muon isolation	0.09	0.01	0.07	0.01
Lepton trigger	0.09	0.12	0.01	0.23
Jet energy scale/resolution	0.08	0.00	0.03	0.00
<i>b</i> -tagging efficiency/mistag	0.14	0.00	0.00	0.00
Misidentified leptons	0.17	0.02	0.15	0.05
Simulation statistics	0.04	0.00	0.06	0.00
Integrated luminosity	0.93	0.83	0.00	0.00
Beam energy	0.23	0.09	0.00	0.00
Total uncertainty	2.66	1.32	0.42	0.45

	× 7	• 1		
•	- V I			С
-	- I I		IU	5

Event counts	$N^{ee}_{1,\mathrm{off-Z}}$	$N_{1,\mathrm{on-Z}}^{ee}$	$N_1^{e\mu}$	$N_{1,{ m off}-Z}^{\mu\mu}$	$N_{1,\mathrm{on-Z}}^{\mu\mu}$
Data	222304	442108	405437	223085	448105
tī	154800 ± 1700	24830 ± 850	361000 ± 4200	152500 ± 1800	24070 ± 860
Wt	17500 ± 1600	2770 ± 240	41500 ± 3800	17800 ± 1700	2730 ± 250
Z+jets	46880 ± 400	410700 ± 2000	859 ± 21	51010 ± 780	418000 ± 2000
Diboson	770 ± 160	3940 ± 840	790 ± 280	770 ± 160	3880 ± 830
Mis-ID leptons	1300 ± 500	360 ± 260	1740 ± 610	390 ± 150	172 ± 87
Total prediction	221280 ± 550	442600 ± 1100	405900 ± 1800	222390 ± 670	448900 ± 1100
Event counts	$N_{2,\mathrm{off-Z}}^{ee}$	$N^{ee}_{2,\mathrm{on-Z}}$	$N_2^{e\mu}$	$N_{2,\mathrm{off}-\mathrm{Z}}^{\mu\mu}$	$N_{2,\mathrm{on-Z}}^{\mu\mu}$
Data	85936	37704	198502	86169	38512
tī	79750 ± 920	13340 ± 480	191000 ± 1800	79770 ± 830	13180 ± 450
Wt	2860 ± 760	400 ± 110	6700 ± 1600	2940 ± 740	423 ± 90
Z+jets	2675 ± 68	23610 ± 590	78 ± 2	3095 ± 87	24110 ± 600
Diboson	67 ± 23	550 ± 110	29 ± 8	71 ± 30	570 ± 110
Mis-ID leptons	400 + 200	06 + 50	720 ± 520	350 ± 160	104 + 56
THIS ID reptons	400 ± 290	90 ± 39	720 ± 320	550 ± 100	104 ± 50

- Use top quarks to probe
 - nuclear PDFs (nPDFs) in kinematic region of Bjorken- $x \sim 5 \cdot 10^{-3} 0.05$ and $Q^2 \sim m_t^2 \sim 3 \cdot 10^4$ GeV² poorly constrained by other measurements in this kinematic region
 - gluon nPDF (important for perturbative calculations in QCD) which may increase the $t\bar{t}$ cross-section by 10% compared to pp collisions.
- Cross-section differences between the two isospin configurations (protonproton and proton-neutron) are below 0.1%

Source	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$					
Source	unc. up [%]	unc. down [%]				
Jet energy scale	+4.6	-4.1				
$t\bar{t}$ generator	+4.5	-4.0				
Fake-lepton background	+3.1	-2.8				
Background	+3.1	-2.6				
Luminosity	+2.8	-2.5				
Muon uncertainties	+2.3	-2.0				
W+jets	+2.2	-2.0				
<i>b</i> -tagging	+2.1	-1.9				
Electron uncertainties	+1.8	-1.5				
MC statistical uncertainties	+1.1	-1.0				
Jet energy resolution	+0.4	-0.4				
tī PDF	+0.1	-0.1				
Systematic uncertainty	+8.3	-7.6				

• Systematic uncertainties

• Data and predicted post-fit yields in the SRs

	$1\ell 1\ell$	b e+	jets	$1\ell 1\ell$	b μ-	+jets	1 <i>ℓ</i> 2 <i>b</i> i	ncl	e+jets	$1\ell 2b$ ir	$\operatorname{ncl}\mu$	<i>i</i> +jets	2	$2\ell 1\ell$)	2ℓ	2 <i>b</i> ir	ncl
tī	214	±	24	194	±	21	405	±	21	373	±	19	55	±	6	79	±	5
<i>t</i> -channel	6.9	±	1.0	6.4	±	1.0	7.7	±	0.9	7.1	±	0.9	0	±	0	0	±	0
W+b	37	±	19	37	±	19	16	±	8	17	±	9		_			_	
W+c	120	±	40	110	±	40	14	±	7	17	±	8		_			_	
W+light	80	±	40	80	±	40	4.8	±	3.1	9	±	5		_			_	
Z+b	16	±	13	8	±	7	8	±	7	3.7	±	3.0	12	±	9	2.9	±	2.4
Z+c	9	±	14	5	±	7	1.7	±	2.6	0.9	±	1.4	6	±	9	0.4	±	0.6
Z+light	28	±	16	12	±	7	1.2	±	1.1	0.9	±	0.5	11	±	6	0.34	±	0.25
Diboson	0.32	±	0.16	0.29	±	0.15	0.055	±	0.029	0.039	±	0.02	0.53	±	0.27	0.049	±	0.025
t W	17.1	±	3.0	15.5	±	2.7	13.6	±	3.2	12.1	±	2.9	5.1	±	2	2.4	±	1.2
Fake lepton	630	±	50	170	±	40	110	±	19	21	±	12	1.9	±	1	0.51	±	0.27
Total	1154	±	34	648	±	24	582	±	21	462	±	18	91	±	7	85	±	5
Data	1162			641			570			464			90			97		

• Measured $\mu_{t\bar{t}}$ value is translated to the inclusive $t\bar{t}$ cross-section via

$$\sigma_{t\bar{t}} = \mu_{t\bar{t}} \cdot A_{\rm Pb} \cdot \sigma_{t\bar{t}}^{\rm th},$$

• Where the mass number is $A_{Pb} = 208$ and $\sigma_{t\bar{t}}^{th}$ is the theoretical prediction of the $t\bar{t}$ cross-section in nucleon-nucleon collisions at NNLO precision (to normalise the signal $t\bar{t}$ samples in single lepton and dilepton decay modes)
$t\bar{t}$ production in p+Pb collisions

• Dilepton post-fit

$t\bar{t}$ production in p+Pb collisions

• Lepton+jets post-fit

$t\bar{t}$ production in p+Pb collisions

- The nNNPDF30 nPDF set shows the largest discrepancies
 - does not include the recent Run 2 LHC data for heavy-flavour production from p-Pb collisions

