Measurement of the cross section for inclusive isolated-photon production in pp collisions at 13 TeV

Souad Batlamous on behalf of the ATLAS Collaboration

Universidad Autónoma de Madrid, Spain

Project PID2021-122738OB-I00 funded by MCIN /AEI/ 10.13039/501100011033 / FEDER, UE

Introduction and motivation

- The measurements of inclusive isolated-photon cross sections performed by ATLAS at 13 TeV using 139 fb⁻¹
 - Important measurement for Ο test of pQCD
 - Constraints on the PDF (especially for gluon-PDF)

Photon isolation

- isolation transverse energy The E_{τ}^{iso} is computed from topological clusters of calorimeter cells within a cone of radius R = 0.4 or R = 0.2 in the $\eta - \phi$ plane around the photon candidate
- **Correction applied for E**^{iso}
- background Residual contribution from jets misidentified as photons:

Background

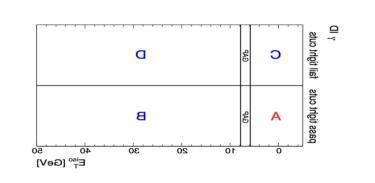
subtraction

A data-driven background 0 subtraction method is used to avoid dependence on detailed simulations of background processes 2D-sideband method is used in on the $\gamma_{\rm ID}$ vs ${\rm E}_{\rm T}^{\rm iso}$ plane and corrected for signal leakage Leading loose' photon is classified into one of the four regions in the plane $\gamma_{\rm ID}$ vs ${\sf E}_{\rm T}^{\rm iso}$ plane are 0 be assumed to for the uncorrelated background

Inclusive isolated photon production

- Measurement of $d\sigma/dE\gamma$ in six regions of $|\eta^{\gamma}|$ for $|\eta^{\gamma}| < 2.37$
 - The form of the differential

cross-section $d\sigma/dE^{\gamma}_{\tau}$ is consistent across various regions and radii


- useful to develop pQCD Ο calculations and tune MC models
- The production of high-Pt prompt proceeds photons via two mechanisms: (Prompt photons: photons not coming from hadron decays)
 - **Direct Process:** Photons Ο originate directly from hard interaction
 - Fragmentation process: Ο photons are produced when high pT parton fragments

FRAGMENTATION

- for the photon corrected energy leakage out of the photon cluster cells
- underlying event (UE) and Ο pile-up contributions to E_{τ}^{iso} using the jet-area method
- Clear signal observed after applying tight and isolation requirements
- A photon candidate is considered isolated if

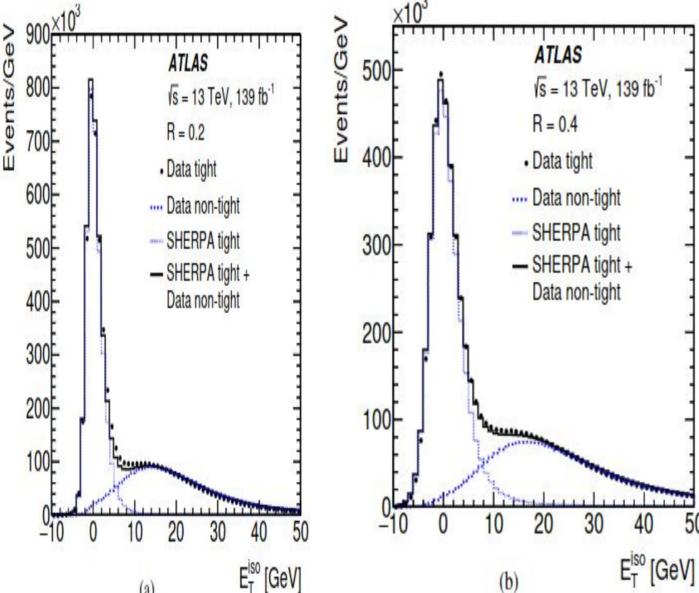
 $E_{\rm T}^{\rm iso} < E_{\rm T,cut}^{\rm iso} = 4.2 \times 10^{-3} \times E_{\rm T}^{\gamma} + 4.8 \text{ GeV}$

- Residual background is still expected even after tight identification and isolation requirements
 - > 900 × 10°

- Region A is the signal region;
- B, C and D is background control regions in each E^γ_τ η^γ bin and measured

- The normalization of the differential cross-section $d\sigma/dE^{\gamma}_{\tau}$ for R=0.2 is higher compared to R=0.4
- NLO pQCD predictions and NNLO pQCD predictions compared to measurements for two different R values.

Good description of the data by NLO and NNLO QCD in most of the phase space


Isolation requirements

DIRECT

Photons are copiously produced inside jets due to neutral meson decays such as π_0 and η into photons

> Essential to Ο require isolation to study prompt photons in hadron colliders

Suppresses Ο thecontribution of photons produced in side jets and the reduces

Event selection

inclusive Measurement the of isolated-photon cross section in pp collisions at $\sqrt{s} = 13$ TeV using the full Run-2 data

The $d\sigma/dE^{\gamma}_{\tau}$ were measured as a function of E_{τ}^{γ} in six $|\eta^{\gamma}|$

- The signal yield (Nsig) in region A is extracted with:
 - $N_{\mathrm{A}}^{\mathrm{sig}} = N_{\mathrm{A}} R^{\mathrm{bg}} rac{(N_{\mathrm{B}} \epsilon_{\mathrm{B}} N_{\mathrm{A}}^{\mathrm{sig}})(N_{\mathrm{C}} \epsilon_{\mathrm{C}} N_{\mathrm{A}}^{\mathrm{sig}})}{(N_{\mathrm{C}} \epsilon_{\mathrm{C}} N_{\mathrm{A}}^{\mathrm{sig}})}$

No correlation between $\gamma_{\rm ID}$ and $E_{\rm T}^{\rm iso}$ is Signal leakage fractions ($\epsilon_{\rm K}$) assumed for background events: from MC: $R^{\rm bg} \equiv \frac{N_{\rm A}^{\rm bg} N_{\rm D}^{\rm bg}}{N^{\rm bg} N^{\rm bg}} = 1.$ $\epsilon_{\rm K} = N_K^{\rm sig} / N_A^{\rm sig}$.

Signal Purity

- Background with subtracted the ABCD method using signal leakage fractions
- The signal purity calculated was using
 - 0.9 Signal leakage fractions from: SHERPA

1000

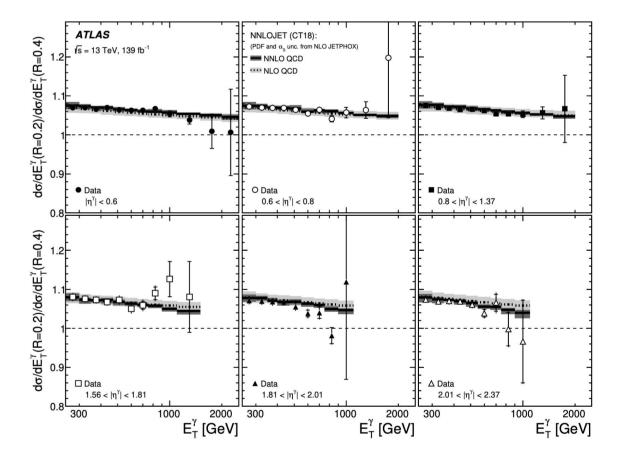
(a)

SHERPA

(g)

1000

2000

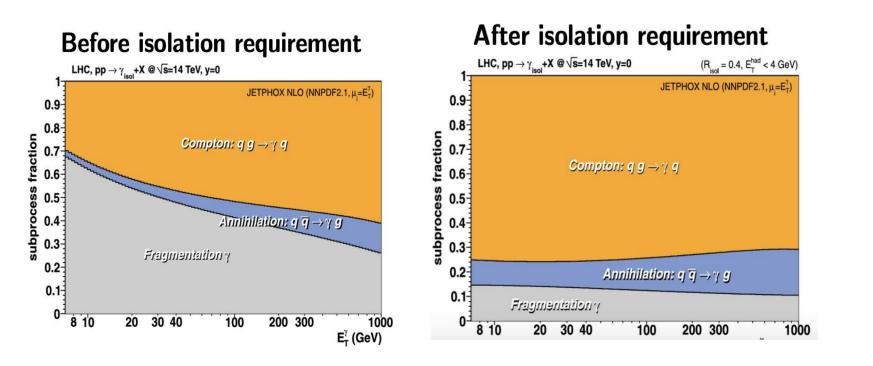

 E_T^{γ} [GeV]

ATLAS

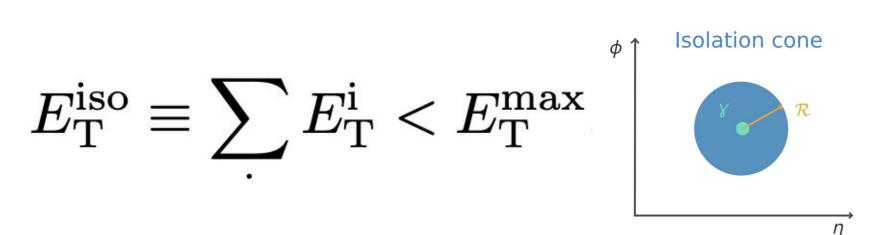
s = 13 TeV, 139 fb⁻¹

 $|\eta^{\gamma}| < 0.6, R = 0.2$

Ratio of differential cross sections



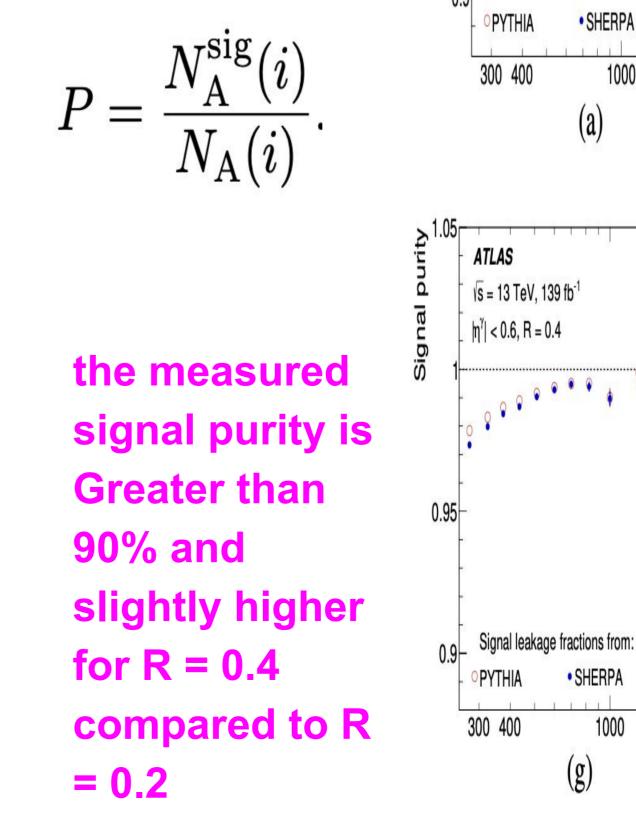
Good description of the data \succ by NNLO pQCD


Conclusion

- Measurements of cross section for inclusive photon production in pp collision at s = 13 TeV
- The inclusive photon cross

contribution from fragmentation photon processes

Fixed-cone isolation requirement is applied:



regions:

- **[0.0, 0.6, 0.8, 1.37; 1.56,** 1.81, 2.01, 2.37]
- $E_{-\gamma}^{\gamma} > 250 \text{ GeV} \text{ and } |\eta^{\gamma}| < 2.37$ (excluding $1.37 < |\eta^{\gamma}| < 1.56$)
- identification Tight and isolation:

 $E_{\rm T,cut}^{\rm iso} = 4.2 \times 10^{-3} \times E_{\rm T}^{\gamma} + 4.8 \text{ GeV}$

 $d\sigma/dE^{\gamma}$, measured for two y-isolation cone sizes: R = 0.2and R = 0.4

section was measured in 2000 $|\eta^{\gamma}|$ regions and for E_{T}^{γ} [GeV] more different γ -isolation cone R, providing more experimental information on isolation NNLO NLO pQCD and predictions match differential cross-section within data uncertainties.

Reference

ATLAS Collaboration, JHEP 03 (2020) 179. DOI: 10.1007/JHEP03(2020)179