Measurement of the cross section for inclusive isolated-photon production in pp collisions at 13 TeV

Souad Batlamous on behalf of the ATLAS Collaboration

Universidad Autónoma de Madrid, Spain

Project PID2021-122738OB-I00 funded by MCIN /AEI/ 10.13039/501100011033 / FEDER, UE

Introduction and motivation

- The measurements of inclusive isolated-photon cross sections performed by ATLAS at 13 TeV using $139 fb^{-1}$
	- Important measurement for test of pQCD
	- Constraints on the PDF (especially for gluon-PDF)

- useful to develop pQCD calculations and tune MC models
- The production of high-Pt prompt photons proceeds via two mechanisms: (Prompt photons: photons not coming from hadron decays)
	- **Direct Process:** Photons originate directly from hard interaction
	- **Fragmentation process:** photons are produced when high pT parton fragments

Isolation requirements

DIRECT

- Photons are copiously produced inside jets due to neutral meson decays such as π_0 and η into photons
	- Essential to require isolation to study prompt photons in hadron colliders
	- Suppresses thecontribution of photons produced in side jets and reduces the

FRAGMENTATION

- corrected for the photon energy leakage out of the photon cluster cells
- underlying event (UE) and pile-up contributions to $E_T^{\text{ iso}}$ using the jet-area method
- Clear signal observed after applying tight and isolation requirements
- A photon candidate is considered isolated if

 $E_{\rm T}^{\rm iso}$ < $E_{\rm T,cut}^{\rm iso} = 4.2 \times 10^{-3} \times E_{\rm T}^{\gamma} + 4.8 \text{ GeV}$

- Measurement of the inclusive isolated-photon cross section in pp collisions at \sqrt{s} = 13 TeV using the full Run-2 data
- The d σ /dE $^{\gamma}$ _T T were measured as a function of $E_T^{\;\;\gamma}$ in six $|η^γ|$

contribution from fragmentation photon processes

- The isolation transverse energy E_T ^{iso} is computed from topological clusters of calorimeter cells within a cone of radius $R = 0.4$ or $R = 0.2$ in the η – φ plane around the photon candidate
- **Correction applied for** E_T^{iso}
- **● Residual background contribution from jets misidentified as photons:**

Fixed-cone isolation requirement is applied:

Photon isolation

The signal yield (Nsig) in region A is extracted with:

Signal leakage fractions (ϵ_K) assumed for background events: from MC: $R^{\text{bg}} \equiv \frac{N_{\text{A}}^{\text{bg}} N_{\text{D}}^{\text{bg}}}{N^{\text{bg}} N^{\text{bg}}} = 1.$ $\epsilon_{\rm K} = N_K^{\rm sig}/N_A^{\rm sig}$.

- **Background** subtracted with the ABCD method using signal leakage fractions The signal purity
- was calculated using

- \bullet d σ /dE^{γ}_T measured for two γ-isolation cone sizes: $R = 0.2$ and $R = 0.4$
- 0.9 Signal leakage fractions from: **OPYTHIA** 300 400 **ATLAS** \sqrt{s} = 13 TeV, 139 fb⁻¹ $|n^{\gamma}| < 0.6, R = 0.4$ **the measured signal purity is Greater than** 0.95 **90% and slightly higher** Signal leakage fractions from: **for R = 0.4** pythia **compared to R** 300 400 **= 0.2**

cross-section $d\sigma/dE^{\gamma}_{\tau}$ T is consistent across various regions and radii

Event selection

regions:

- **○ [0.0, 0.6, 0.8, 1.37; 1.56, 1.81, 2.01, 2.37]**
- $E_T^{\gamma} > 250$ GeV and $|\eta^{\gamma}| < 2.37$ $\text{(excluding } 1.37 < |\eta^{\gamma}| < 1.56)$
- Tight identification and isolation:

 $E_{\rm T,cut}^{\rm iso} = 4.2 \times 10^{-3} \times E_{\rm T}^{\gamma} + 4.8 \,\text{GeV}$

- Residual background is still expected even after tight identification and isolation requirements
	- $\frac{10^{3}}{500}$ $\geq 900 \frac{\times 10^3}{10}$
- $\overline{\mathsf{D}}$
- **○** Region A is the signal region;
- **○** B, C and D is background control regions in each E^{γ} T and η^{γ} bin measured
- The normalization of the differential cross-section $d\sigma/dE^{\gamma}_{\;\;\tau}$ T for R=0.2 is higher compared to R=0.4
- NLO pQCD predictions and NNLO pQCD predictions compared to measurements for two different R values.

○ A data-driven background subtraction method is used to avoid dependence on detailed simulations of background processes **○** 2D-sideband method is used in on the γ_1 $_{\sf ID}$ vs ${\sf E}_{\sf T}^{\sf iso}$ plane and corrected for signal leakage Leading loose' photon is classified into one of the four regions in the plane **○** $_{\text{ID}}$ vs E_T^{iso} plane are assumed to be uncorrelated for the background

Background

subtraction

Signal Purity

ATLAS

 \sqrt{s} = 13 TeV, 139 fb⁻¹

 $|n^{\gamma}| < 0.6$, R = 0.2

·SHERPA

 $\left(\text{a}\right)$

· SHERPA

 $\left(\begin{smallmatrix} g \\ S \end{smallmatrix} \right)$

1000

2000

 E_T^{γ} [GeV]

1000

2000

Inclusive isolated photon production

- Measurement of dσ/dEγ in six regions of $|\eta^{\gamma}|$ for $|\eta^{\gamma}|$ < 2.37
	- The form of the differential

Good description of the data by NLO and NNLO QCD in most of the phase space

Ratio of differential cross sections

➢ **Good descriptionof the data by NNLO pQCD**

Conclusion

- Measurements of cross section for inclusive photon production in pp collision at s $= 13$ TeV
	- The inclusive photon cross

section was measured in more $|\eta^{\gamma}|$ regions and for E_T^{γ} [GeV] different γ -isolation cone R, providing more experimental information on isolation NLO and NNLO pQCD predictions match differential cross-section data within uncertainties.

Reference

ATLAS Collaboration, **JHEP 03 (2020) 179**. DOI: 10.1007/JHEP03(2020)179