

Probing the nature of electroweak symmetry breaking with Higgs boson pairs in ATLAS

Ang Li

On behalf of the ATLAS collaboration

PIC 2024, Greece Athens, Oct. 23, 2024

Outline

***Introduction** $HH \to b \overline{b} \gamma \gamma$ $• HH \rightarrow b\overline{b}\tau^{+}\tau^{-}$ $• HH \to b\overline{b}b\overline{b}$ $HH \rightarrow 2b + 2\ell + E_T^{miss}$ $H \rightarrow Multilepton$ **Combination** High-Luminosity LHC projection **Summary**

di-Higgs Physics Introduction

Higgs couplings to Electroweak

Kappa framework: parametrize the Higgs boson couplings as the ratio to the SM prediction

HHH and VVHH coupling accessible via HH production

di-Higgs Production and Decay HH decay Mode Higgs boson

self-coupling (κ_{λ})

HH Production mode:

gluon-gluon Fusion (ggF) $\sigma_{ggF} = 31 fb$ (SM)

Vector Boson Fusion (VBF) $\sigma_{VBF} = 1.7 fb$ (SM)

		bb	ww	ττ	ZZ	ΥY
	bb	34%				
	WW	25%	4.6%			
	ττ	7.3%	2.7%	0.39%		
	ZZ	3.1%	1.1%	0.33%	0.069%	
	YY	0.26%	0.10%	0.028%	0.012%	0.0005%

bbbb(34%) – largest branching ratio, but challenging multijet background $b\overline{b}\gamma\gamma$ (0.26%) – low branching ratio, but clean final state, excellent $m_{\gamma\gamma}$ resolution $b\overline{b}\tau^+\tau^-$ (7.3%) – in between in terms of signal vs background trade-off $b\overline{b}\ell^+\ell^-$ + missing E_T (2.9%) – targeting events where one $H \to b\bar{b}$, one $H \to \ell^+ \ell^- \nu \bar{\nu}$ Multilepton (6.5%) – Combination of 9 channels, Higgs boson decay to leptons

ATLAS has probed more than half of the decay modes

Ang Li

JHEP 01 (2024) 066

$HH \rightarrow bb\gamma\gamma$

Tiny branching ratio but very clean signature:

- \succ excellent $m_{\gamma\gamma}$ resolution
- small backgrounds

* 2 b-jets and 2 photons with $105 < m_{\gamma\gamma} < 160$ GeV

***** 7 event categories based on:

→ High mass $(m_{bbvv}^* > 350 \text{ GeV})$ vs low mass $(m_{bbvv}^* \le 350 \text{ GeV})$

 $m_{b\bar{b}\nu\nu}^* = m_{b\bar{b}\nu\nu} + (125 \text{ GeV} - m_{b\bar{b}}) + (125 \text{ GeV} - m_{\gamma\gamma})$

classification BDT output

ATLAS Simulation √s = 13 TeV

Phys. Rev. D 106 (2022) 052001

* No dedicated VBF category but the mass and $\Delta \eta$ of VBF-tagged jets are inputs to the BDTs

0.25

0.2

JHEP 01 (2024) 066

6

$HH \rightarrow b\overline{b}\tau^+\tau^-$

- $\tau_{had}\tau_{had}$ and $\tau_{lep}\tau_{had}$ (Single lepton trigger and lepton + $\tau_{had-vis}$ triggers) final states:
 - > 3 Final state categories
 - BDT to separate ggF and VBF
 - > ggF low mass (m_{HH} < 350 GeV), ggF High mass (m_{HH} > 350 GeV), VBF
 - > 1 Control Region depends on $m_{\ell\ell}$
 - In total, 9 Signal region + 1 Control Region
- BDT trained in each Signal Region to discriminate Signal vs. Background *

***** Backgrounds:

 \succ Fake τ from $t\bar{t}$ or multi-jets – estimated using data driven methods, deriving fake factors or scale factors from control regions

Phys. Rev. D 110 (2024) 032012

Phys. Rev. D 110 (2024) 032012

$HH \rightarrow b\overline{b}\tau^+\tau^-$

At 95% confidence level:

* $\tau_{had} \tau_{had}$ is the most sensitive channel * $HH \rightarrow b\overline{b}\tau^+\tau^-$ is expected to be the most sensitive channel to SM HH

$HH \rightarrow b\overline{b}b\overline{b}$

Resolved

- > 4 b-tagged jets, Pair "Closest jets" to form Higgs candidates
- ➢ ggF and VBF categories

* Boosted:

- > 2 *X* → *bb* jets and two VBF jets
- VBF topology only

Signal centered in m_{H1} and m_{H2} plane Main background from QCD multijet

- > Data driven normalisation from signal region sidebands
- Simple scale factor (Neutral Network) in Resolved (Boosted)

\Rightarrow Fit to m_{HH} (BDT) in Resolved (Boosted)

<u>Phys. Rev. D 108 (2023) 052003</u> resolved <u>Phys. Lett. B 858 (2024) 139007</u> boosted

m_{H1} [GeV]

$HH \rightarrow b\overline{b}b\overline{b}$

Phys. Rev. D 108 (2023) 052003 resolved Phys. Lett. B 858 (2024) 139007 boosted

 κ_{λ} from Resolved

 κ_{2V} from Boosted + Resolved

At 95% confidence level:

- $\geq \mu_{HH} < 5.4$ (8.1 expected), from Resolved
- > Observed: $-3.5 < \kappa_{\lambda} < 11.3$ Expected: $-5.4 < \kappa_{\lambda} < 11.4$ Resolved
- > Observed: 0.55 < κ_{2V} < 1.49 Expected: 0.37 < κ_{2V} < 1.67 Resolved + Boosted

***** At 95% confidence level:

- \succ μ_{HH} < 9.7 (16.3 expected)
- ▶ Observed: $-6.2 < \kappa_{\lambda} < 13.3$ Expected: $-8.1 < \kappa_{\lambda} < 15.5$
- → Observed: $-0.17 < \kappa_{2V} < 2.4$ Expected: $-0.51 < \kappa_{2V} < 2.7$

$HH \rightarrow MultiLeptons$

✤ 9 different di-Higgs decay final states are considered in this analysis

Ang Li * No channel driving the sensitivity, we need all to achieve this expected limit

12

HH Combination

Combining:

 $> HH \rightarrow b\bar{b}\gamma\gamma, HH \rightarrow b\bar{b}\tau^{+}\tau^{-}, HH \rightarrow b\bar{b}b\bar{b}, HH \rightarrow 2b + 2\ell + E_{T}^{miss}, HH \rightarrow Multilepton$

***** At 95% confidence level:

- $\gg \mu_{HH} < 2.9$ (2.4 expected assuming no HH)
- ≻ Observed: $-1.2 < \kappa_{\lambda} < 7.2$ Expected: $-1.6 < \kappa_{\lambda} < 7.2$
- → Observed: $0.6 < \kappa_{2V} < 1.5$ Expected: $0.4 < \kappa_{2V} < 1.6$

HL-LHC projection:

♦ HL-LHC: $\sqrt{s} = 13 \text{ TeV} \rightarrow 14 \text{ TeV}$, $\mathcal{L} = 140 fb^{-1} \rightarrow 3000 fb^{-1}$ Will Start in 2030

- Seline assuming 2 times reduction in theory modelling uncertainty and 2 times better b-tagging

*****HH discovery significance 3.4 σ *****95% confidence interval for κ_{λ} expected to be [0.0, 2.5]

HL-LHC: $b\overline{b}\tau^+\tau^-$ update *HL-LHC: $\sqrt{s} = 13 \text{ TeV} \rightarrow 14 \text{ TeV}, \mathcal{L} = 140 \text{ } fb^{-1} \rightarrow 3000 \text{ } fb^{-1}$ Will Start in 2030 * Latest update base on Run 2 Legacy analysis (Latest, shown today)

Phys. Rev. D 110 (2024) 032012

- Assuming SM HH production, a signal significance of 3.5σ (4.6σ) is expected in the baseline (statistical only)
- Improvements in b-tagging developed for Run 3 are expected to further increase the signal significance to 3.8σ (4.9σ statistical only)
- ♦ $\kappa_{\lambda} \in [-0.1, 2.7] \cup [4.5, 6.4]$ at 95% confidence level constraints ([0.2, 2.1] without systematic uncertainties)

Summary

***** HH events provides unique experimental reconstruction of Higgs Potential

- *** HH events are rare process**
- **Constraints on HH cross-section:**
 - $\succ \mu_{HH} < 2.9$ Observed (2.4 Expected)
- **Constraints on Higgs self-coupling:**
 - → Observed: $-1.2 < \kappa_{\lambda} < 7.2$ Expected: $-1.6 < \kappa_{\lambda} < 7.2$
- **Constraints on HHVV coupling:**
 - \succ Observed: 0.6 < κ_{2V} < 1.5 Expected: 0.4 < κ_{2V} < 1.6
- * ATLAS has the best expected sensitivity on κ_{λ}
- *** HL-LHC will help us for further constraint on HH**