Searches for additional Higgs bosons in ATLAS

Kevin Nelson, on behalf of the ATLAS collaboration October 23, 2024 PIC 2024 Athens, Greece

Outline

• Diphoton resonance searches

• A clean, classic signature

• Searches for light scalars in the $H_{125} \rightarrow aa$ decay mode

- Low p_T boosted objects necessitate new analysis ideas
- Searches for charged Higgs bosons
 - The latest ATLAS excess...

• Results from as new as July 2024 in each of these three categories

Searches for $\gamma\gamma$ resonances

• Theoretical motivations:

- It is often difficult to turn off scalar $\rightarrow \gamma\gamma$ decays (and retain any SM) interactions) due to loops of both fermions and vector bosons
- Wide variety of models: ALP/R-axion, RS-graviton, 2HDM, NMSSM
- Clean experimental signature
- In fermiophobic models the branching ratio to photons can be enhanced by orders of magnitude compared to SM Higgs
- Pictured are branching fractions of a *fully fermiophobic* Higgs: All couplings to fermions=0

• Recent experimental intrigue

• CMS 95 GeV

Kevin Nelson

Searches for $\gamma\gamma$ resonances: 66-110 GeV

• Photon conversion categories separate $Z \rightarrow ee$ fake background

- Require boosted $\gamma\gamma$ system: $E_T/m_{\gamma\gamma} > 22/58 \approx 0.38$
 - Results in exponentially falling background which is easier to fit
- Spurious signal systematic reduced by a factor of 3x (up to 30%) improvement in limit) due to Gaussian process regression (low mass) and **<u>functional decomposition</u>** smoothing (high mass)

Searches for $\gamma\gamma$ resonances

- search.
- No evidence for new Higgs bosons decaying to photons in ATLAS searches.
 - Largest deviation: 3.3σ local at 684 GeV

Upper Limit on $\sigma_{fid} imes BR$ [fb]

95% CL

• Limits are fiducial cross section (X branching ratio). See <u>2407.07546</u> (or next slide) for direct comparison of 95 GeV excess to CMS with model dependent SM-Higgs like assumptions on production mode. BDT categories also used for model-dependent

Searches for $\gamma\gamma$ resonances: 66 to 110 GeV

• Model-dependent limit assumes production in ggF, VBF, VH, tH modes matches proportions of SM Higgs

• (This is not necessarily a good assumption, but we can run with it. Motivated by this direct comparison.)

• ATLAS excludes the size of the CMS excess at the 95% CL

- ATLAS is about equally sensitive, but sees a far smaller bump
- anymore, ATLAS sees 3.3σ local at 684 GeV...

2HDM+S searches

	 2HDM+S model: 2nd doublet+light psuedoscalar (a) added to the SM.
SM	• 2HDM type, $\tan\beta$, m_a are free parameters.
-	 Depending on type, leptons, up-, down-type quark coupling scale like either tan β or cot β Almost any final state can become dominant
SM	• $a \rightarrow$ SM possible via $a \leftrightarrow \Phi_1, \Phi_2$ mixing.
	• When m_a is small, SM 2-body decays merged. Also lease the second state of the se

2HDM+S searches

2HDM+S searches

2HDM+S: $bb\mu\mu$

- A bump was seen in the ATLAS search for $H \rightarrow aa \rightarrow bb\mu\mu$
 - 3.3 (1.7) σ local (global)
- Relatively "clean" signature due to di-muon resonance
- Need other final states to weigh in
- In particular, this excess could imply enhanced coupling between a and leptons
- Logical next step: $bb\tau\tau$

- Quite difficult signature: low p_T , poor mass resolution
- Categorize based on experimental signature of tau and heavy flavor
- Use <u>DeXTer</u> deep sets based algorithm for Low- p_T merged "double" B-jet
 - Recluster tracks around an ordinary jet in a R=0.8 cone
 - Cluster into precisely 2 sub-jets
 - Each sub-jet has minimum 5 GeV p_T , R=0.8 jet minimum 20 GeV

9

- Use a parameterized NN [1601.07913] to search for low mass resonances
- For example, show pNN spectra for 8 mass points in the $(e\mu, 1b)$ category (1 of 9 categories)

input. Parameterizes response and allows for a search for a family of related models

Non-paramerized NN: must train amodel for each mass hypothesis

- No excess observed
- Boosted "B" tagger (2 sub-jets consistent with b) improves limit by a factor of 2 at low mass compared to CMS
- Bottom right shows limit using B vs 1b vs 2b heavy flavor category
- ATLAS and CMS have comparable limits above 20 GeV (resolved regime)
 - Main source for any discrepancy is the barrel muon trigger efficiency is lower in ATLAS than CMS
- This is not the end of $bb\mu\mu$ excess!
 - Just means that if the excess is real, it likely does not couple proportional to lepton mass. Could be Z'.

Charged Higgs searches

- Singly- and doubly- charged Higgs bosons present in <u>Georgi-Machacek model</u>
- Introduce a new Higgs triplet field with 9 degrees of freedom:
 - A doubly charged particle, a two singly charged particles, and three real neutral particles

• Similarly to 2HDM, an angle parameterizes how much the new degrees of freedom participate in EWSB:

 $\sin^2 \theta_H = 8b^2/v^2$

- Where "b" is the VeV acquired by the scalars in χ and v = 246 GeV is determined by G_F , $\sin \theta_W$
- If there is no VeV in the new triplet, it doesn't participate in EWSB
- Charged Higgses also present in 2HDM/MSSM

$$= \begin{vmatrix} \chi^{0} & \zeta^{+} & \chi^{++} \\ \chi^{-} & \zeta^{0} & \chi^{+} \\ \chi^{--} & \zeta^{-} & \chi^{0} \end{vmatrix}$$

X

- $t\bar{t}$ event topology with lepton trigger

- are different

13

-	с
	\overline{s}
	b
	\overline{b}
	ℓ^-
•	_

- A BDT is used to build a discriminant for statistical interpretation
- Mass of the H^{\pm} affects not only the c, s kinematics but also the b because a heavier H^{\pm} can take more of the top mass-energy

Kevin Nelson

- No excess is observed

• CMS has a search in 36 fb⁻¹, so ATLAS naturally is more sensitive. ATLAS also covers larger mass range.

Charged Higgs searches: combination

- $W^{\pm}Z$ and $W^{\pm}W^{\pm}$ final states
- Near 400 GeV there is an excess 3.3 (2.5) σ local (global)
- <u>CMS</u> is less sensitive (exp limit on $\sin \theta_H \sim 0.23$ at 400 GeV) ATLAS exp limit on $\sin \theta_H \sim 0.16$ at 400 GeV
- Combines searches: <u>[2207.03925]</u> [**2312.00420**]

• Assuming the masses of new charged Higgses H^{\pm} and $H^{\pm\pm}$ are identical (m_{H_5}), combine searches in the

Cut for time (but no less interesting!)

Kevin Nelson

Conclusion

• No evidence for new Higgs bosons in ATLAS

- Diphoton resonances
 - Largest excess: 3.3σ local at 684 GeV.
 - No evidence supporting the 95 GeV excess from CMS.
- 2HDM+S low mass scalars
 - $bb\tau\tau$ was a cross-check on $bb\mu\mu$. No local excess above 2σ .
 - Means $bb\mu\mu$ excess likely not 2HDM+S particle, could be Z' boson (or nothing)
- Charged Higgses
 - 3.3 (2.5) σ local (global) in combination of searches in $W^{\pm}Z$ and $W^{\pm}W^{\pm}$
 - A small hint of things to come? We should wait and see what CMS has to say

[2407.10798]

Backup

ATLAS diphoton: clockwork

- Periodic signals
- the theory)

• k=mass parameter denoting start of periodic signals. M_5 is the reduced Planck mass (fundamental scale of

CMS diphoton

- Could not find a full run 2 search below 70 GeV from CMS
- High mass searches up to $m_{\gamma\gamma}$ ~3 TeV are shown.
 - Mass spectrum is categorized based on barrel vs endcap.

21

Control regions for **Z**, *tt*

• Major backgrounds: $t\bar{t}$, Z+jets, fake leptons/taus

- *tt*, Z+jets modeled with MC. Fake leptons use matrix method. Fake taus use fake factor method.
- In $e\mu$ channel, lepton isolation cones can overlap in boosted regime
 - Ignore lepton for each other's isolation, but still tracks/calorimeter deposits can fall into the middle of the Venn diagram
 - Causes *correlation* of isolation discriminant, breaks down matrix method Results become un-physical.

• Developed a correction to 2-lepton matrix method:

- Re-weight the population of events when both leptons fail isolation
- Remain agnostic to which lepton "should" have failed isolation
- Correction is proportional to the fraction of overlap between isolation cones

$$(-w_{L}^{e}w_{L}^{\mu})^{\text{corr}} = (1 - f(\Delta R))\left(-w_{L}^{e}w_{L}^{\mu}\right) + f(\Delta R) \times \frac{1}{2}\left(w_{L}^{e}w_{T}^{\mu} + w_{T}^{e}w_{L}^{\mu}\right),$$
$$f(\Delta R) = c \times \left(\frac{2}{\pi}\arccos\left(\frac{\Delta R}{2r}\right) - \frac{\Delta R}{\pi r^{2}}\sqrt{r^{2} - \frac{(\Delta R)^{2}}{4}}\right), \quad [2407.01335]$$

$$[w_L^{\mu}]^{\text{corr}} = (1 - f(\Delta R)) \left(-w_L^e w_L^{\mu} \right) + f(\Delta R) \times \frac{1}{2} \left(w_L^e w_T^{\mu} + w_T^e w_L^{\mu} \right),$$

$$f(\Delta R) = c \times \left(\frac{2}{\pi} \arccos\left(\frac{\Delta R}{2r}\right) - \frac{\Delta R}{\pi r^2} \sqrt{r^2 - \frac{(\Delta R)^2}{4}} \right), \quad [2407.01335]$$

These tracks Count against Both leptons

• Full list of BDT input variables

Variable type	Variable name	Definition			
Top-quark kinematic variables					
	$j_1 p_{\rm T}$	$p_{\rm T}$ of j_1 -labelled jet			
	$j_2 p_{\rm T}$	$p_{\rm T}$ of j_2 -labelled jet			
	$b_{\rm had} p_{\rm T}$	$p_{\rm T}$ of $b_{\rm had}$ -jet			
4	$b_{\rm had}^{t_{\rm had}-{\rm rest}} p$	Momentum of b_{had} -jet in t_{had} rest fram			
<i>i</i> _{had}	dijet mass	Invariant mass of $j_1 + j_2$ jets			
	$(j_1 + b_{had})$ mass	Invariant mass of $j_1 + b_{had}$ jets			
	(j_2+b_{had}) mass	Invariant mass of $j_2 + b_{had}$ jets			
	$\cos\theta$	Boson spin sensitive variable			
	$b_{\text{lep}} p_{\text{T}}$	$p_{\rm T}$ of $b_{\rm lep}$ -jet			
4	Lepton $p_{\rm T}$	$p_{\rm T}$ of reconstructed lepton			
<i>l</i> _{lep}	W mass	Invariant mass of reconstructed W bose			
	$t_{\rm lep}$ mass	Invariant mass of reconstructed t_{lep}			
	$t_{\text{lep}} p_{\text{T}}$	$p_{\rm T}$ of reconstructed $t_{\rm lep}$			
tt avetam	$\Delta R(b_{\text{lep}}, b_{\text{had}})$	ΔR between the b_{lep} -jet and b_{had} -jet			
<i>u-system</i>	$t\bar{t}$ mass	Invariant mass of $t_{had} + t_{lep}$			
Event variables					
	N _{jets}	Number of jets in the event			
Event level	S_{T}	Scalar $p_{\rm T}$ sum of all calibrated objects			
	$\overline{P}_{t\bar{t}}$	Normalised probability of correct jet la			
Flavour-tagging variables					
	j ₁ PCFT	PCFT score of j_1			
Flavour tagging score	j ₂ PCFT	PCFT score of j_2			
Playour-tagging score	$b_{\rm had}$ PCFT	PCFT score of b_{had} -jet			
	$b_{\rm lep}$ PCFT	PCFT score of b_{lep} -jet			
	N _{c-tagLo}	Number of jets passing loose c-tag WP			
Number of tags	$N_{c-\text{tagTi}}$	Number of jets passing tight <i>c</i> -tag WP			
runnoer of tags	$N_{b-\text{tag70}}$	Number of jets passing 70% b-tag WP			
	N _{b-tag60}	Number of jets passing 60% <i>b</i> -tag WP			

Table 2: Final list of BDT input variables used in the training.

Charged Higgses

Comparison of ATLAS and CMS combinations for charged Higgses

