

Measurements of Higgs boson mass, width, and CP with the ATLAS detector Luca Franco (Nikhef and Radboud University) **On behalf of the ATLAS collaboration**

PIC 2024, October 23rd 2024

Introduction

L. Franco - PIC 2024, October 23rd 2024

- Mass m_H (free parameter of the Standard Model (SM))
 - Strength of interaction with other SM particles depends on m_H
 - Stability of our universe (via the Higgs potential) depends on $m_{\rm H}$
- Decay width Γ_H
 - New physics can alter its value both directly (new final states) and indirectly (virtual particles in the loop)

Charge-Parity (CP) state

- Predicted to be pure CP-even in the SM
- CP-odd components in the couplings might explain baryon asymmetry of the universe

$H \rightarrow \gamma \gamma$ mass

- Select events with two "good quality" photons
- Classify events into 14 categories according to the properties of the two photons (conversion status, position of energy cluster, ...)
- Model signal and background using analytic functions
- Simultaneous fit of $m_{\gamma\gamma}$ data in each category

GeV

 $1/N \, dN/dm_{\gamma\gamma}$ / 0.5

Peak position depends on m_H (and photon energy scale systematics!)

scale impact [MeV] **ATLAS** 800 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}, \text{H} \rightarrow \gamma \gamma$ 700 Previous calibration 600 New calibration, w/o linearity 500 New calibration, w/ linearity 400 300 200 Photon energy 100 C <u>O</u> **Event categories** high arrel,

Systematic uncertainty x4 smaller thanks to new calibration

Intermezzo: photon energy calibration

- New ATLAS calibration based on full run 2 data
 - electronics' response
 - in longitudinal layers of the calorimeter
 - leakage from e/y clusters

$H \rightarrow yy$ candidate event

$H \rightarrow \gamma \gamma + H \rightarrow 4\ell$ combination

- Combining m_H measurements from the two channels with best mass resolution
- Combining with old results from run 1
- Unprecedented precision thanks to ATLAS commitment to understanding the detector and its performance

$125.11 \pm 0.11 (\pm 0.09)$ GeV

<u>Ultimate precision on m_H is < 0.1% !</u>

L. Franco - PIC 2024, October 23rd 2024

Higgs decay width

- The SM predicts a very narrow width $\underline{\Gamma_{H}} = 4.07 \text{ MeV} \blacktriangleleft$
- Direct measurement? Experimental resolution O(1) GeV

Higgs decay width

L. Franco - PIC 2024, October 23rd 2024

$H \rightarrow ZZ On/Off-shell$

- Performed in two channels:
 - 4ℓ final state, where the output of neural networks (O_{NN}), used to enhance Higgs signal, is fitted
 - $2\ell 2\nu$ final state, where the transverse mass of the ZZ system is fitted $m_{\rm T}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p}_{\rm T}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$
- Uncertainty from theoretical modelling of signal and backgrounds is the dominant systematic

L. Franco - PIC 2024, October 23rd 2024

Combination of ttH + Higgs-mediated tttt

 $\Gamma_H < 160(55) \text{ MeV } @95\% \text{ CL}$

First constraint on Γ_H *using processes* involving the top-Yukawa coupling!

$H \rightarrow ZZ^* \rightarrow 4\ell CP$

- couplings
- operators

VBF $H \rightarrow \tau \tau CP$

- Interpretation of differential cross-section measurements via SMEFT approach
- CP-odd operators can intervene in the HVV coupling → studied through VBF production
- 2D distributions of $\Delta \phi_{ii}^{signed}$ vs p_T^H are asymmetrical for non-zero CP-odd couplings

L. Franco - PIC 2024, October 23rd 2024

CP nature of Yukawa couplings investigated too (see back-up)

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)}$ ATLAS Exp. Lin. $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ $H \rightarrow \tau \tau$, $\Delta \phi_{ii}^{signed}$ vs p_{τ}^{H} \leftarrow Obs. Lin. 95% confidence level

$H \rightarrow \tau \tau + 2j$ candidate event

Conclusions

- combining with data from run 1)
 - The mass, a free parameter of the theory, is now known with very high precision (per mill level):

$$m_H =$$

$$\Gamma_H < 10.5$$

- CP-odd contributions to the couplings have not been completely ruled out (yet) with our data

• ATLAS has measured the properties of the Higgs boson exploiting 140 fb⁻¹ of pp collisions at $\sqrt{s=13}$ TeV (in some cases)

 $125.11 \pm 0.11 \text{ GeV}$

• The decay width is difficult to measure at the LHC, nonetheless it's been constrained (using different methods):

(10.9) MeV @ 95 % CL

• Some of these measurements are statistically limited and will be significantly updated with the upcoming dataset of run 3

Back-up

$H \rightarrow yy$ mass: event categories

- Selected diphoton events are split into 14 mutually exclusive categories
 - At least one converted $\gamma \rightarrow e^+e^-$ candidate (C-type) or only unconverted candidates (U-type)
 - Position of the associated photon energy cluster: central-barrel, outer-barrel or endcap
 - Magnitude of the $p_T^{\gamma\gamma}$ component orthogonal to the thrust axis \hat{t} : low, medium or high

$$p_{\mathrm{Tt}}^{\gamma\gamma} = |\vec{p}_{\mathrm{T}}^{\gamma\gamma} \times \hat{t}| \qquad \hat{t} = (\vec{p}_{\mathrm{T}}^{\gamma_1} - \vec{p}_{\mathrm{T}}^{\gamma_2})/|\vec{p}_{\mathrm{T}}^{\gamma_1} - \vec{p}_{\mathrm{T}}^{\gamma_2}|$$

Central-barrel

0.8

1.37 1.52

2.37

Mass

$H \rightarrow ZZ$ off shell: analysis strategy

Analyses performed in three signal regions

Interference component parametrised separately from signal and background \bullet

$$\nu^{\text{ggF}}(\mu_{\text{off-shell}}^{\text{ggF}}, \boldsymbol{\theta}) = \mu_{\text{off-shell}}^{\text{ggF}} \cdot n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) + \sqrt{\mu_{\text{off-shell}}^{\text{ggF}}} \cdot (n_{\text{SBI}}^{\text{ggF}}(\boldsymbol{\theta}) - n_{\text{S}}^{\text{ggF}}(\boldsymbol{\theta}) - n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta})) + n_{\text{B}}^{\text{ggF}}(\boldsymbol{\theta})$$

EW signal region

 $n_{
m jets} \geq 2$ and $\Delta \eta_{jj} \geq 4.0$

$H \rightarrow ZZ$ off shell: interference

- Signal and background have same initial and final state
- Negative interference in the off-shell region with destructive effects on the cross-section

In the ATLAS analysis, three regions are defined to target the production modes: ggF, EW and mixed.

ttH+4top width: details

			Target processes		Refer
Systematic uncertainty	Impact on 95% CL upper limit on Γ_H Expected [%]Observed [%]		Off-shell measurement $pp \rightarrow t\bar{t}t\bar{t}$		[26
Theory	37	33	On-shell measurement		
tītī production	25	13	Production	Decay	
Higgs boson production/decay	5	6	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	$H \to \gamma \gamma$	[3]
Other processes	10	16	ttH + tH	$H \rightarrow bb$	[32
Experimental	2	2	WH, ZH VDE	$H \rightarrow bb$ $H \rightarrow b\bar{b}$	[33,
Jet flavour tagging	2	1	$\nabla D\Gamma$ $\sigma \sigma F VBF WH \perp 7H t\bar{t}H \perp tH$	$\begin{array}{c} \Pi \rightarrow bb \\ H \rightarrow 77 \end{array}$	[3.
Jet and missing transverse energy	< 1	< 1	ggr, VDr, WII + ZII, IIII + III $\sigma\sigma F VBF$	$H \to ZZ$ $H \to WW$	[30
Leptons and photons	< 1	< 1	WH. ZH	$H \rightarrow WW$	[38
All other systematic uncertainties	< 1	< 1	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	$H \rightarrow \tau \tau$	[39
			$ggF+ t\bar{t}H + tH$, VBF+ $WH + ZH$	$H \rightarrow \mu \mu$	[4(
			Inclusive	$H \rightarrow Z \gamma$	[4]

- Production OO \rightarrow 2-jets variable
- Decay OO \rightarrow 4l variable

$H \rightarrow ZZ \ CP$: analysis strategy

- Decay-only fit: \bullet
 - Decay-level OO in the **Inclusive SR**
- Production-only fit:
 - VBF-depleted region to estimate ggF normalization
 - Production-level OO in VBF SR 1-4
- Combined fit:
 - Decay-level OO in VBFdepleted region
 - **Production-level OO in VBF** SR 1-4

analysis

$H \rightarrow ZZ CP$: results

- Constraints on Wilson coefficients related to dim-6 CP-odd operators
- Two bases considered: Warsaw and Higgs mass eigenstates
- Sensitive to only CP-odd couplings i.e. not CP-even quadratic terms, nor CP-even couplings
- No uncertainties on the normalisation of the processes (datadriven)
- All results are compatible with the SM expectation of pure CPeven couplings

Operator	Structure	Coupling	
	Warsaw Basis		
$O_{\Phi ilde W}$	$\Phi^\dagger \Phi ilde W^I_{\mu u} W^{\mu u I}$	$c_{H\widetilde{W}}$	
$O_{\Phi \tilde{W}B}$	$\Phi^\dagger au^I \Phi ilde W^I_{\mu u} B^{\mu u}$	$C_{H\widetilde{W}B}$	
$O_{\Phi ilde{B}}$	$\Phi^\dagger \Phi ilde{B}_{\mu u} B^{\mu u}$	$c_{H\widetilde{B}}$	
	Higgs Basis		
$O_{hZ\tilde{Z}}$	$hZ_{\mu u} ilde{Z}^{\mu u}$	\widetilde{c}_{zz}	
$O_{hZ ilde{A}}$	$hZ_{\mu u} ilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$	
$O_{hA ilde{A}}$	$hA_{\mu u}\tilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$	

single BSM CP-odd coupling

L. Franco - PIC 2024, October 23rd 2024

Parameter value

CP-mixing angle

CP nature of Yukawa couplings

 $\mathscr{L}_{ffH} = \kappa'_f y_f \phi \bar{\psi}_f (\cos \alpha + i\gamma_5 \sin \alpha) \psi_f$

Coupling strength

And pure CP-odd hypothesis excluded at 3.4o

- - production
- Η→ττ

• $H \rightarrow bb$ produced in association with top quarks (ttH and tH)

• CP-sensitive observables rely on characteristics of the ttH topology for CP-odd

Interactions with tau-leptons in

CP-sensitive observables rely on the geometry of the visible t decay products

And pure CP-odd hypothesis excluded at 1.20

