Measurements of Higgs boson production and decay rates with the ATLAS experiment

- **Rabia Shaheen on the behalf of the ATLAS collaboration KTH Royal Institute Of Technology**
- 43rd International Symposium on Physics in Collision, 2024 23/10/2024

Introduction

- Since discovery of Higgs boson, experiments focus on measuring its properties
- Higgs Boson couplings to massive particles fall into these main categories:
 - **Gauge Couplings to vector boson**

Yukawa couplings to fermions

Self-coupling of the Higgs field

(Not part of this presentation) talk by Ang Li

• Precise measurements of these couplings are a crucial test of Standard Model (SM) and **Beyond Standard Model (BSM)**

Higgs Boson Production and Decay Modes

- Various production and decays channels for the Higgs boson, <u>Abraham talk</u>
 - 4 main production channel
 - 5 Key decay channels:
 - $H \rightarrow b\bar{b}, H \rightarrow \tau\tau$ and $H \rightarrow WW^*$, high BR but low resolution
 - $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$, low BR but high resolution
- Run 2, ATLAS recorded ~140 fb⁻¹ from pp collisions data
- ~9 million Higgs bosons were produced
- Only **0.3%** are experimentally accessible
- Cross section measurements are essential for understanding processes

ggF	(
^g 🔞	٥
ť	
g 😡	•

Cross section Measurements

Simplified Template Cross-section (STXS):

- Done for each production mode
- Split regions by the specific kinematic properties of the Higgs boson and associated jets, W or Z
- predictions

Fiducial and differential measurements:

- Phase spaces with specific selections
- σ in bins of sensitive observables, i.e. p_T^H

Interpretation based on SMEFT

- Model-Independent approach to study SM deviation
- SMEFT langrangian in terms of SM:

Recent ATLAS Higgs coupling results

- Differential cross-section $H \rightarrow \tau \tau$ decay channel <u>HIGG-2022-07</u>
- Relative sign of the Higgs boson couplings to W and Z bosons using WH production via vector-boson fusion arXiv:2402.00426
- Direct constraint on the Higgs-charm coupling from a search for $H \to c\bar{c}$ arXiv:2201.11428
- a Vector Boson in the *qqbb* Final State <u>arXiv:2312.07605</u>
- <u>108 (2023) 032005</u>
- Higgs Combination Results : Nature 607 (2022) 52-59

Study of High-Transverse-Momentum Higgs Boson Production in Association with

• Higgs boson production by ggF and VBF using $H \rightarrow WW^*$ decays Phys. Rev. D

2022-0

- ggF, VBF, VH and $t\bar{t}H$ production modes, H $\rightarrow \tau\tau$
- Largest branching ratio to leptons enables study of Yukawa couplings and of a broad range of production modes
- $t\bar{t}H$: Categorisation based on $m_{\tau\tau}$ and $p_T(H)$
- Differential cross section and STXS measurement for : $\Delta \phi_{ii}$, $p_T^{j_0}$, p_T^H , $\Delta \phi_{ii}$ Vs p_T^H

$H \rightarrow \tau \tau Analysis (1/2)$

- 8% improvement in the combined fit, ~25% (*ttH*) improvement in the signal strength (statistically limited) compared to previous analysis
- $(\sigma \times B)/(\sigma \times B)_{SM} = 0.93 \pm 0.07$ (stat) ± 0.10 $(sys) \rightarrow consistent with SM$

$H \rightarrow \tau \tau Analysis (2/2)$ **STXS** categorisation

ATLAS

			-Tot. Syst. NTheory
		$aa \rightarrow H$ 1-jet 120 < $n^{H} < 200$ GeV	
ų		$gg \rightarrow H$, $f jet$, $f 20 \leq p_T^H < 200 GeV$	
		$gg \rightarrow H, \ge 1$ -jet, $00 \ge p_T < 120 \text{ GeV}$	
		$gg \rightarrow H, \ge 2$ jet, $m_{ij} < 0.00, 120 \ge p_T < 200 \text{ GeV}$	
7	いて	$gg \rightarrow H, \ge 2$ -jet, $H_{j} \ge 350 \text{ GeV}, p_{T} < 200 \text{ GeV}$	
		$gg \rightarrow H, 200 \leq p_T^{-1} < 300 \text{ GeV}$	
Ŧ	_	gg→H, $p_T^{-1} \ge 300 \text{ GeV}$	
		$qq \rightarrow \Pi qq$, ≥ 2 -jei, $\delta U \geq \Pi_{ij} < 120 \text{ GeV}$	
	qq	$ \rightarrow Hqq', \ge 2$ -jet, 350 $\le m_{ij} < 700 \text{ GeV}, p_T^{+} < 200 \text{ GeV}$	
VBF	qq-	\rightarrow Hqq', \geq 2-jet, 700 \leq m \leq 1000 GeV, p T < 200 GeV	
	dd,→	Hqq^{2} , ≥ 2 -jet, 1000 $\leq m_{jj}^{2} < 1500 \text{ GeV}$, $p_{T}^{2} < 200 \text{ GeV}$	
		$qq' \rightarrow Hqq', \ge 2$ -jet, $m_{jj} \ge 1500 \text{ GeV}, p_T' < 200 \text{ GeV}$	_ *
	qq	$J' \rightarrow Hqq', \ge 2$ -jet, 350 $\le m_{jj} < 700 \text{ GeV}, p_T'' \ge 200 \text{ GeV}$	
	qq'-	→Hqq', ≥ 2-jet, 700 ≤ m < 1000 GeV, $p_T' \ge 200 \text{ GeV}$	
	qq'→	Hqq', ≥ 2-jet, 1000 ≤ m < 1500 GeV, p 22-jet, 1000 ≤ m	H -
Ŧ		qq'→Hqq', ≥ 2-jet, m _{jj} ≥ 1500 GeV, p _T ⁻ ≥ 200 GeV	
		ttH, p _т ^н < 200 GeV	
		ttH, 200 ≤ p _T ^H < 300 GeV	
		ttH, p _T ^H ≥ 300 GeV	└─── ┊╹────── ┛
			0 5

15

p-value = 6%

0.35

0.50

0.53

5.09

0.99

1.51

0.94 ^{+0.68} _{-0.65}

-0.96 ^{+1.17} _____1.31

-0.24 ^{+0.79}_{-0.89}

1.68 ^{+0.61} _{-0.55}

0.12 ^{+0.34} -0.33

-1.16 ^{+0.87} _{-0.81}

0.98 +0.73 -0.63

1.40

1.29

2.1

-2.2

3.6

10

+0.56 -0.50

+0.39 -0.34

+1.8 -1.5

+1.3 -1.1

+2.9

-2.3

+0.61 -0.61

+0.89 -0.89

+0.75 -0.74

+3.09 -2.49

+0.39 -0.36

+0.59 -0.50

+0.38 -0.37

+0.52 -0.52

+0.49

+1.66

-1.64

+0.28 -0.28

+0.44 -0.43

+0.57 -0.55

+0.83 -0.81

+0.63 -0.60

+0.50 -0.47

+0.30

+0.75 -0.55

+0.67 -0.59

+0.52

+0.35 -0.32

(^{+1.5} _____3

+1.1 -0.8

+2.6

-2.1

Relative sign of the Higgs boson couplings to W and Z bosons using WH production via VBF

- Search for WH production via VBF with $H \rightarrow b\bar{b}$ decay (<u>arXiv:2402.00426</u>)
- Coupling of higgs boson with W and Z bosons expressed with κ_W and κ_Z
- Analysis probes the sign of $\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z}$ and test SM prediction ($\lambda_{WZ} = 1$)
- The values of κ_W and κ_Z are determined to have the same sign
- Opposite-sign hypothesis excluded with significance >5 σ

VBF WH production

- Analysis selects $H \rightarrow bb/c\bar{c}$ events associated with a W or Z boson \rightarrow rarest higgs production modes
- Better object reconstruction/calibrations/ **Improved** analysis strategy as compared to previous analysis
- Analysis strategy validated searching diboson WZ and ZZ signal

Legacy V(\rightarrow lepton)H(\rightarrow bb/cc) 1/2

- Extended (n_{jets} splitting) and reduced STXS categorisation for V (\rightarrow leptons) H(\rightarrow bb)
- Constraints on a charm Yukawa coupling modifier $|\kappa_c| < 4.2$ at 95 % CL
- Ratio of $|\kappa_c|$ and $|\kappa_b|$ is less than 4.5
 - **Excludes the hypothesis that the Higgs-charm interaction is stronger than or equal Higgs**bottom coupling at 95% CL

Legacy VH($\rightarrow bb/c\bar{c}$) 2/2

10

Boosted VH analysis in fully hadronic final state

- $V(\rightarrow qq') H(\rightarrow bb)$ are highly boosted \rightarrow Twolarge radius jets
- Neural network technique to tag boosted H $\rightarrow bb$
- Full hadronic decay BR is larger compared to leptonic
 - Potential of probing high- p_T^H higgs boson
- Multijet backgrounds are estimated through data
- Signal strength $\mu = 1.4^{+1.0}_{-0.9}$ in agreement with SM
- Differential cross section in several ranges of p_T^H

Large-R jet **Differential Measurement** $VH \rightarrow qqbb$ √s = 13 TeV, 137 fb⁻¹ Postfit VV V+jets top

Large-R jet

- $H \rightarrow WW^*$ production using ggF and VBF production channels
- n_{jets} for channel categorisation, m_T^H as a discriminant in the ggF channel and **DNN** in the VBF channel
- Inclusive and STXS cross section measurements are compatible with the SM

Inclusive Cross Section

$H \rightarrow WW^*$ analysis

STXS categorisation

	ATLAS $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $H \rightarrow WW^* \rightarrow e v \mu v$			otal Statistica Systemat SM Predi	I Unc. tic Und iction
	<i>p</i> -value = 53%	Total	(Stat.	Syst.)	SM U
<i>ggH-0j</i> , р ^{_н} _т < 200 GeV	1.21	+0.16 -0.16	(^{+0.08} 0.08	, ^{+0.14})	± 0.0
<i>ggH-1j</i> , р ^{_н} < 60 GeV	0.82	2 ^{+0.57} -0.59	(^{+0.30} 0.30	, $^{+0.49}_{-0.51}$)	± 0.1
<i>ggH-1</i> j, 60 ≤ p ^H _T < 120 GeV	0.58	8 ^{+0.48} -0.48	(^{+0.32} 0.32	, $^{+0.36}_{-0.36}$)	± 0.1
<i>ggH-1j</i> , 120 ≤ <i>p</i> ^{<i>H</i>} _⊤ < 200 GeV	1.40	6 ^{+0.80} -0.77	(^{+0.63} 0.62	, ^{+0.49})	± 0.1
<i>ggH-2j</i> , р _т < 200 GeV	1.59	+0.89 -0.87	(^{+0.44} _0.44	, $^{+0.78}_{-0.76}$)	± 0.2
<i>ggH</i> , <i>ρ</i> ^{<i>H</i>} _⊤ ≥ 200 GeV		+0.87 -0.83	(+0.68 -0.66	, $^{+0.55}_{-0.51}$)	± 0.2
EW qqH-2j , 350 $\leq m_{jj}$ < 700 GeV, p_{T}^{H} < 200 GeV		5 +0.57 -0.57	(^{+0.42} 0.38	, ^{+0.39})	± 0.0
EW qqH -2 j , 700 $\leq m_{jj}$ < 1000 GeV, p_{T}^{H} < 200 GeV	1 0.5€	$6^{+0.63}_{-0.58}$	(^{+0.53} 0.48	, $^{+0.35}_{-0.34}$)	± 0.0
EW qqH -2 j , 1000 $\leq m_{jj}$ < 1500 GeV, p_{T}^{H} < 200 GeV	1.18	3 ^{+0.52} -0.45	(^{+0.45} 0.41	, $^{+0.25}_{-0.19}$)	± 0.0
EW <i>qqH-2j</i> , <i>m_{jj}</i> ≥ 1500 GeV, <i>p</i> ^{<i>H</i>} _⊤ < 200 GeV	1.14	4 ^{+0.40} -0.36	(^{+0.37} 0.34	, ^{+0.15} _{-0.14})	± 0.0
EW qqH -2 j , $m_{jj} \ge 350$ GeV, $p_{T}^{H} \ge 200$ GeV	1.1 2	7 +0.49 -0.44	(+0.45 -0.40	, $^{+0.20}_{-0.17}$)	± 0.0
_	1 0 1 2 3	4	5	6	7
	σ·Β	H→W	w* / (σ·B _{H-}	→WW*

HIGG-2020-24

00

First Look at \sqrt{s} =13.6 TeV: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$ cross section

- collision data at a $\sqrt{s} = 13.6 \text{ TeV} \rightarrow \text{both are in agreement with SM}$
 - Di-photon invariant mass within the fiducial region in the window of $105 \le m_{\gamma\gamma} \le 160 \text{ GeV}$
- Di-lepton invariant mass in the window of $105 \le m_{\gamma\gamma} \le 160 \text{ GeV}$

Inclusive and fiducial cross section measurements in the di-photon and $ZZ^* \rightarrow 4l$ decay channels using 31.4 and 29.0 fb^{-1} pp

- Values of cross section measurements as a function of \sqrt{s}
 - SM predicted values are shown with shaded band
 - Combination of di-photon and di-lepton channels is shown with black color
 - Overall ~15 % relative uncertainty on combine cross section with 13.6 TeV data

 2022: ATLAS combination of all available production and decay modes is performed to measure the signal strength

$$\mu = \frac{(\sigma \times B)_{obs}}{(\sigma \times B)_{SM}} = 1.05 \pm 0.06$$

All agrees with the SM prediction

Nature 607 (2022) 52-59

Inclusive Cross section measurements in Run 2

14

- 36 kinematic regions

All measurements are consistent with the SM predictions

STXS categorisation

Nature 607 (2022) 52-59

- measurements are consistent with the SM
- We are entering a precision era with uncertainties below 10% for some measurements, though some channels still face statistical uncertainties
- Extend coupling measurements to second-generation fermions
- New advanced techniques and increased statistics are enabling the exploration of more channels while enhancing existing measurements
- STXS interpretations are used to rigorously test the validity of the SM across different phase space regions
- Look forward to Run3 results with improved statistics and analysis methods

Summary

• Precision measurements are crucial for constraining Higgs-boson couplings, so far

$H \rightarrow WW^*$ analysis

- sizable branching ratio, rich phenomenology in 2-stage decay
- no full reconstruction, complex and diverse backgrounds

•

ggF and VBF: fiducial/differential, in-likelihood unfolding to particle level for various observables

6

Simplified Template Cross-section (STXS):

- Done for each production mode
- Split regions by the sensitive kinematic properties of the Higgs boson and associated jets, W or Z
- A template to study deviations from the SM predictions

Fiducial and differential Measurements:

- Specific phase spaces with selected criteria
- Determine cross section in bins of **some sensitive** observables, i.e. p_T^H
- The shape of differential σ distribution use for range of further interpretations

Interpretation based on SMEFT

• SMEFT langrangian in terms of SM:

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i}^{6} c_{i}/\lambda^{2}\mathcal{O}_{i}^{6} + \sum_{j}^{8} b_{j}/\lambda^{4}\mathcal{O}_{j}^{8}$$

• Cross section relative to SM expectation:

$$\sigma_{EFT} / \sigma_{SM} = 1 + \sum_{i} A_i c_i + \sum_{ij} B_{ij} c_i c_j$$

Cross section Measurements

Simplified Template Cross-section (STXS):

- Done for each production mode
- Regions designed based on Higgs boson and particle properties
- A template to study deviations from the SM predictions

Fiducial and differential Meaurements:

- Specific phase spaces with selected criteria
- Determine cross section in bins of some sensitive observables, i.e. p_T^H
- The shape of differential cross section use for interpretations

 $SM \rightarrow \kappa = 1$, κ_{H} is the total width of Higgs boson

- Nearly 9 million Higgs bosons were produced, consistent with Standard Model (SM) predictions, though only 0.3% were experimentally accessible
- Several Higgs boson production and decay modes were studied

- Gluon-gluon fusion (ggF) was the dominant production mode at the LHC, offering an indirect measurement of the top-quark coupling through virtual loops (first observed in Run 1)
- The ttH process provides a direct measurement of the Higgs Yukawa coupling to the top quark, though it occurs at a much lower rate
- The ttH, VH, and ZH production modes were observed during Run 2 of the LHC

Higgs Boson Production and Decay Modes

Branching ratio	Mass re
High	L
High	L
High	Very
Low	Н
Low	Н
	Branching ratio High High Low

Higgs Boson Production and Decay Modes

- Various Production and decays channels for the Higgs boson
 - Gluon-gluon fusion (ggF) is the dominant production mode (87%)
 - Indirect top-quark coupling via loops (first seen in Run 1)
 - Vector Bososn Fusion (VBF) is the second dominant production channel (7%)
 - Top-anti top quark pair (ttH) directly measures the Higgs-top Yukawa coupling but occurs at a lower rate
 - Radiation of vector bosons (W/Z) leads to rare channels
 VH or tH (Run 2)
 - $H \rightarrow b\bar{b}, H \rightarrow \tau\tau$ and $H \rightarrow WW^*$, high BR but low resolution
 - $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^*$ low BR but high resolution
- In Run 2, ATLAS recorded ~140 fb⁻¹ from proton-proton collisions
- About 9 million Higgs bosons were produced, but only 0.3% are accessible
 - Precise production rate measurements is essential for understanding processes

- sizable branching ratio, rich phenomenology in 2-stage decay
- no full reconstruction, complex and diverse backgrounds

•

ggF and VBF: fiducial/differential, in-likelihood unfolding to particle level for various observables