

The Latest Results From Daya Bay

Shandong University

On Behalf of the Daya Bay Collaboration

Neutrino Oscillations

Measuring θ_{13} with nearby reactors

Detecting neutrinos in km away from

A clean measurement of θ_{13} with no CP phase and negligible matter effects

- **High statistics**
- **Optimize** baseline
- Reduce systematics uncertainties
- **Reduce backgrounds**

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$ $-\sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$ Total rate deficit (Rate-Analysis) : $\sin^2 2\theta_{13}$ Observables: Energy dependent rate deficit (Spectra-Analysis) : $(\sin^2 2\theta_{13}, \Delta m_{32}^2)$

need energy nonlinearity well

2024/10/22-25

PIC 2024 NCSR "Demokritos", Athens, Creece

Daya Bay Layout

Far Hall 1540 m from Ling Ao I 1910 m from Daya Bay 324 m overburden

Entrance

3 Underground Experimental Halls Ling Ao Near Hall 470 m from Ling Ao I 558 m from Ling Ao II 100 m overburden

> Ling Ao II Cores - Ling Ao I Cores

Daya Bay Near Hall 363 m from Daya Bay 93 m overburden

- Daya Bay Cores

■ 17.4 GW_{th} power

- 8 operating detectors
- 160 t total target mass

Detector System

- Functionally identical Antineutrino Dectors (ADs)
 - 3-zone detector module : naturally define fiducial volume and good shielding
- Immersed in water pool segmented and instrumented with PMTs
 - shielding and muon tagging

Daya Bay Neutrino Experiment

Lastest results :

- nGd neutrino oscillation with full dataset (3158 days) Phys.Rev.Lett.130,161802(2023)
- nH neutrino oscillation with **sub dataset (1958 days)** Phys.Rev.Lett 133,151801(2024)
- Sterile neutrino search with **<u>full dataset</u>**
- Phys.Rev.Lett 133, 051801(2024)
- Reactor flux and spectra measurement with **full dataset** ICHEP2024, Neutrino2024

2024/10/22-25

PIC 2024 NCSR "Demokritos", Athens, Creece

Signal Selection

 $\overline{\nu}_e$ are detected via Inverse Beta Decays (IBDs) : $\overline{\nu}_e + p \rightarrow e^+ + n$

Correlated signals from e^+ (prompt) and neutron captures (delayed)

nGd- IBD: in GdLS

- Ep: [0.7,12]MeV Ed: [6,12]MeV
- Time separation $dT < 200 \mu s$

nH-IBD : in GdLS + LS

- Large accidental contaminations
 Optimized cuts
 - Ep > 1.5MeV

$$DT(= dR + dT * \frac{1000mm}{600us}) < 1m$$

- More energy leakage: Fine calibration

Signal and Background Summary

Sample	Signal and	l Backgrounds	Near	Far
	Signal		~ 650/Day	~75/Day
nGd	B/S	Accidentals	~ 1.0%	~1.0%
(3158		Muon-induced	~ 0.5%	0.5%
Days)		Other	~0.04%	~ 0.1%
nH Signal	Signal		~ 500/Day	~ 60/Day
(1958)	B/S	Accidentals	~25%	~180%
<u>uaysj</u>		Muon_induced	~1.0%	~0.7%
		Others	~0.05%	~0.4%

nGd Sample: Clean sample with very **low backgrounds B/S < 1.5 %**

- nH Sample: Comparable statistics
 - suffer large accidental background contamination
 - Good news: accidentals are measured precisely

Detector Calibration

Relative energy scale : < 0.2% variation in reconstructed energy among ADs **Energy nonlinearity**: < 0.5% uncertainty (**correlated among all ADs**) is achieved for Positrons with kinematic energy greater than 1 MeV

nGd – full dataset

precision 2.8%

precision 2.4%

Parametrazation : $P_{\overline{\nu}_e \to \overline{\nu}_e} = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} - \sin^2 2\theta_{13} \sin^2 \Delta_{ee} \quad \Delta_{ee} \equiv \Delta m_{ee}^2 L/4E$

2024/10/22-25

nH: 1958 Days

- An update on the previous rate-only result based 621 Days of data: a rate and shape study
 - Identification of radiogenic background
 - Multiple detectors at the same site provides a check on detector identicalness
 - Fine energy calibration: Relative energy scale $\leq 0.3\%$
 - Development of energy response model for using energy spectrum to extract oscillation parameters

nH-Oscillation Results

Consistent with nGd result within 2σ Statistics contribute 47% and 64% of the total error of $\sin^2 2\theta_{13}$ and Δm_{32}^2 respectively

2024/10/22-25

Global Comparison

Daya Bay leads the precision - nGd+nH : 2.6% - nGd: 2.8%

Zeyuan Yu Neutrino 2024

Search For Sterile Neutrinos

Minimal "3+1" extension of Total Unc. DATA EH2 the 3-neutrino mixing 1.05 1.00 $P_{\overline{\nu}_e \to \overline{\nu}_e} \approx 1 - \cos^4 \theta_{14} \sin^2 2\theta_{13} \sin^2 \Delta_{32}$ $-\sin^2 2\theta_{14} (\cos^2 \theta_{13} \sin^2 \Delta_{41} + \sin^2 \theta_{13} \sin^2 \Delta_{43})$ 0.95 $|\Delta m_{41}^2| = 4 \times 10^{-3} \text{ eV}^2$ <u>م</u> 1.10 EH3 $|\Delta m_{41}^2| = 4 \times 10^{-2} \text{ eV}^2$ $\frac{EH2/3}{M_{EH1}/P_{EH1}^{3V}}$ $M_{EH2/3}/P_{EH2/3}^{3V}$ $\sin^2 2\theta_{14} = 0.1$ • Looking for deficit of the $\bar{\nu}_e$ Rate and energy spectrum distorsion 0.95 2 1 2 3 Prompt Energy [MeV]

Statistical Test of "3+1" neutrino mixing hypothesis using Daya Bay nGd full data sample

Search for Sterile Neutrinos

Comparison with other experiments

No evidence of a light sterile neutrino

Phys.Rev.Lett 133, 051801(2024)

The world's most stringent limits on the sterile-active neutrino mixing parameter $\sin^2 2\theta_{14}$ in the region of $2\times 10^{-4} eV^2 \leq \Delta m^2_{41} \leq 0.1 \ eV^2$

Reactor Flux and Spectrum Measurement

Chys.Phys. C 41,1(2017) 013002

More than 99% ν

_e ogrinate from βdecays of fission fragments of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
 In one burning cycle:

```
^{235}U \downarrow ^{238}U - ^{239}Pu \uparrow ^{241}Pu \uparrow
```


Phys.Rev.Lett, 123 , 111801 (2019)

Data-Model Discrepancy

- Rate Discrepancy wrt Huber-Mueller model
- Shape Discrepancy w.r.t conversion and cummation models

Reactor Flux Measurement

- Fuel evolution can be viewed effective fission fractions F:
 - Fraction of fission isotopes viewed by detector in weekly basis
- IBD yield σ_f : number of $\overline{\nu}_e$ per fission * IBD cross section

 $\overline{\sigma}_{\rm f} = (5.84 \pm 0.07) \times 10^{-43} \frac{\rm cm^2}{\rm fission}$

Extract $\sigma_{235}, \sigma_{239}$:

 ϵ : systematics

 $\chi^2 = \chi^2(\sigma_f, F, \sigma_i, \epsilon) + \chi^2(\sigma_{238}, \sigma_{241})$

Constrain with HM (10%)

- σ_f : Measured IBD yield
- F: effective fission fraction
- σ_i : $\sigma_{235}, \sigma_{239}$ Fitting parameter

 $\sigma_{235} = [6.16 \pm 0.12] \times 10^{-43}$ $\sigma_{239} = [4.16 \pm 0.21] \times 10^{-43}$

(unit: cm²/fission)

Reactor $\bar{\nu}_e$ spectrum measurement

Overall Spectrum

 $\bar{\nu}_e$ flux spectrum from ²³⁵U and ²³⁹Pu

- ~ 1.4% precision in 2-5 MeV - Shape discrepancy w.r.t HM : ~ 10σ in 4-6 MeV (systematic dominant) ²³⁵U: ~3% in 2-5 MeV Shape discrepancy w.r.t HM: ~4 σ in 4-6MeV ²³⁹Pu: ~8% in 2-5 MeV Shape discrepancy w.r.t HM: ~1 σ in 4-6MeV (statistical error dominant)

Summary

- Daya Bay has been providing the most precise measurement of $\sin^2 2\theta$
- Various topics are addressed using full dataset
 - Sterile neutrinos search yields null results
 - Precise measurement of reactor flux and spectra
 - Extraction of spectra and yield of individual isotope of ²³⁵U and ²³⁹Pu.
- Data analysis is still on-going, stay tuned for more results to come
 - Final results on reactor flux and spectrum measurement will be released soon
 - Seasonal variation of comic muon intensity
 - nH-oscillation with full data set
- Other interesting topics not covered
 - First Measurement of ⁸He isotopes produced in liquid scintillator by cosmic-ray muons at Daya Bay: Phys. Rev. D 110 (2024)

The Daya Bay Collaboration

Backup

Signal and Backgrounds

nGd-FullDataset	Eł	EH1 EH2 EH3						
	AD1	AD2	AD3	AD8	AD4	AD5	AD6	AD7
$\bar{\nu}_e$ candidates	794 335	144 247 5	132 830 1	121 659 3	194 949	195 369	193 334	180 762
DAQ live time [day]	1535.111	2686.110	2689.880	2502.816	2689.156	2689.156	2689.156	2501.531
$\varepsilon_{\mu} imes \varepsilon_{m}$	0.7743	0.7716	0.8127	0.8105	0.9513	0.9514	0.9512	0.9513
Accidentals [day ⁻¹]	7.11 ± 0.01	6.76 ± 0.01	5.00 ± 0.00	4.85 ± 0.01	0.80 ± 0.00	0.77 ± 0.00	0.79 ± 0.00	0.66 ± 0.00
Fast $n + muon-x [day^{-1}]$	0.83 ± 0.17	0.96 ± 0.19	0.56 ± 0.11	0.56 ± 0.11	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01	0.05 ± 0.01
⁹ Li/ ⁸ He [AD ⁻¹ day ⁻¹]	2.92 =	± 0.78	2.45 =	± 0.57		0.26 =	± 0.04	
$^{241}\text{Am}^{-13}\text{C} \text{ [day}^{-1}\text{]}$	0.16 ± 0.07	0.13 ± 0.06	0.12 ± 0.05	0.11 ± 0.05	0.04 ± 0.02	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.01
$^{13}C(\alpha, n)^{16}O \ [day^{-1}]$	0.08 ± 0.04	0.06 ± 0.03	0.04 ± 0.02	0.06 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.03 ± 0.02	0.04 ± 0.02
$\bar{\nu}_e$ rate [day ⁻¹]	657.2 ± 1.1	685.1 ± 1.0	599.5 ± 0.8	591.7 ± 0.8	75.0 ± 0.2	75.2 ± 0.2	74.4 ± 0.2	74.9 ± 0.2

EH1-AD1	EH1-AD2	EH2-AD1	EH2-AD2	EH3-AD1	EH3-AD2	EH3-AD3	EH3-AD4
1536.624	1737.620	1741.214	1554.046	1739.010	1739.010	1739.010	1551.381
		Anal	lysis A				
602 614	690 506	688 868	599 446	258 084	265 453	263 683	234 910
0.6071	0.6044	0.6725	0.6724	0.9187	0.9179	0.9173	0.9186
119.20 ± 0.04	117.58 ± 0.04	108.47 ± 0.03	104.17 ± 0.03	101.28 ± 0.03	106.73 ± 0.03	105.60 ± 0.03	104.78 ± 0.03
2.78 =	± 0.33	2.07 =	± 0.23		0.18 =	± 0.03	
2.34 =	± 1.01	2.83 =	± 1.15		0.28 ±	± 0.10	
0.05 ± 0.03	0.05 ± 0.03	0.04 ± 0.02	0.04 ± 0.02	0.02 ± 0.01	0.02 ± 0.01	0.02 ± 0.01	0.01 ± 0.01
			0.20 =	± 0.04			
521.36 ± 1.35	534.49 ± 1.33	474.64 ± 1.37	464.36 ± 1.39	59.57 ± 0.34	58.88 ± 0.34	59.02 ± 0.34	59.38 ± 0.36
	$\begin{array}{c} {\rm EH1}{\rm -AD1} \\ \\ 1536.624 \\ \\ 602.614 \\ 0.6071 \\ 119.20 \pm 0.04 \\ 2.78 \\ 2.34 \\ 2.34 \\ 0.05 \pm 0.03 \\ \\ 521.36 \pm 1.35 \end{array}$	$\begin{array}{c cccc} EH1-AD1 & EH1-AD2 \\ \hline 1536.624 & 1737.620 \\ \hline 602.614 & 690.506 \\ 0.6071 & 0.6044 \\ 119.20 \pm 0.04 & 117.58 \pm 0.04 \\ 2.78 \pm 0.33 \\ 2.34 \pm 1.01 \\ 0.05 \pm 0.03 & 0.05 \pm 0.03 \\ \hline 521.36 \pm 1.35 & 534.49 \pm 1.33 \\ \hline \end{array}$	$\begin{array}{c ccccc} EH1-AD1 & EH1-AD2 & EH2-AD1 \\ \hline 1536.624 & 1737.620 & 1741.214 \\ & & & & & \\ 602.614 & 690.506 & 688.868 \\ 0.6071 & 0.6044 & 0.6725 \\ 119.20 \pm 0.04 & 117.58 \pm 0.04 & 108.47 \pm 0.03 \\ 2.78 \pm 0.33 & 2.07 \pm 2.34 \pm 1.01 & 2.83 \pm 0.05 \pm 0.03 & 0.05 \pm 0.03 & 0.04 \pm 0.02 \\ \hline 521.36 \pm 1.35 & 534.49 \pm 1.33 & 474.64 \pm 1.37 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Backgrounds

- Uncorrelated : Accidentals
- Muon-induced correlated backgrounds
 - Fast Neutron: produced outside the AD but enters the active volume of the AD
 - "Muon-X": Associated with untagged muon due to equipment malfunction (become non-negligible at later days when some PMTs in water pool are dieing)
 - Li9/He8: Spallation product by cosmic muons inside AD
- Other Backgrounds
 - ²⁴¹Am-¹³C: calibration neutron source reside the ACU
 - (nGd): ¹³C(α, n)¹⁶O
 - (nH) Radiogenic neutrons (Phys.Rev.D 104,092006(2021))

Calibration

PMT calibration:

- Single PE from dark noise
- Weekly LED monitoring

Energy Calibration

- Weekly 68Ge, 60Co,241Am-13C
- Spallation neutrons
- Natural Radioactivity

$$\frac{\sigma_E}{E_{rec}} = \sqrt{a^2 + \frac{b^2}{E_{rec}} + \frac{c^2}{E_{rec}}}$$

- a = 0.016 : detector nonuniformity b = $0.081 MeV^{1/2}$: p.e. statistics
- c = 0.026MeV : noise

Phys. Rev. D 95 072006(2017)

Nonlinearity Model Calibration

- FlashADC was install in EH1AD1 during specail calibration during end of 2016
- Less thatn 0.5% uncertainty in energy nonliearity is achieved for positrons with kinematic energy greater than 1MeV
 - constrains from data and removal of electronics nonlinearity with FADC

Radiogenic neutron Backgrounds

- Radiogenic neutron backgrounds
 - Spontaneous fission
 - (α, n) reactions in peripheral materials of the antineutrino detectors
- Good shielding is needed for removing the background

Phys. Rev. D 104, 092006(2021)

Signal Selection

nGd Det	ection ef	ficiencie	S
	Efficiency	Correlated	Uncorrelated
Target protons	-	0.92%	0.03%
Flasher cut	99.98%	0.01%	0.01%
Delayed energy cut	92.7%	0.97%	0.08%
Prompt energy cut	99.8%	0.10%	0.01%
Multiplicity cut		0.02%	0.01%
Capture time cut	98.7%	0.12%	0.01%
Gd capture fraction	84.2%	0.95%	0.10%
Spill-in	104.9%	1.00%	0.02%
Livetime	-	0.002%	0.01%
Combined	80.6%	1.93%	0.13%

	Uncertainty (%)		
	Analysis A	Analysis B	
Target protons	0.11	0.11	
Prompt energy	0.13	0.13	
[1, 1500] µs	0.10	0.10	
Delayed energy	0.20	0.24	
Coincidence DT	0.20	0.21	
Combined (ε)	0.34	0.37	

Phys.Rev.D 95, 072006 (2017)

Compared with nGd analysis, nH analysis faces more challenging systematic uncertainties

nH

Consistent results from reactor and accelerator experiments

Normal Ordering slightly preferred (<20) from reactor/accelerator averages

