

NEON Collaboration

NEON (Neutrino Elastic-scattering Observation with NaI)

Aim to observe Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$) from reactor $\bar{\nu}_e$ using NaI(TI) detector

17 collaborators (active members of COSINE-100 and/or NEOS)

First observation of CEνNS (COHERENT experiment)

The COHERENT collaboration with spallation neutron source (stopped pion source)

First observation with a CsI(Na)

PRL 126, 012002 (2021) arXiv:2406.13806°

Confirmation with liquid Ar & Ge

Hyun Su Lee.

Center for Underground Physics (CUP),

Institute for Basic Science (IBS)

Reactor neutrinos for CEvNS

Neutrinos from SNS

Few times $10^7/\text{s/cm}^2$ at 20 m

- Much large neutrino flux
- Much lower energy deposition
- If we have a proper detector...
 - Precision measurement for neutrino properties
 - Reactor monitoring & nuclear non-proliferation
 - In principle, CEνNS can prove below IBD threshold (1.8 MeV)

about 10^{13} /s/cm² at 24 m

Neutrino energy

 $E_{max} = 2E_{\nu}^2/M_N \sim 2 \text{ keV}$

Mass of target nucleus

Hyun Su Lee, Center for Underground Physics (CUP), Institute for Basic Science (IBS)

NaI(TI) for CEνNS

- High measured light yield (15 NPE/keV_{ee} in COSINE-100)
 - ❖ Trigger threshold : 2 NPE (0.13 keV_{ee})
 NPE = Number of Photoelectrons
- Larger recoil energy from Na (N² dependence testable)
- Easy to make large size detector O(10 kg)
- Low background detector available (3 counts/kg/day/keV=3dru)
- Easy to scale up with affordable costs O(100 kg)

COSINE-100 detector

NaI(TI) for CEνNS

Expected Signals (13.5 kg year)

~1000 events/year with 0.2 keV threshold

>3 sigma observation!!

If we achieve ~ 10 counts/kg/keV/day (dru) background

EPJC 83, 226 (2023)

Can we reach to low enough energy threshold? ~0.2 keV_{ee}?

High light yield NaI(TI) detectors

- Direct attachment of NaI(TI) to PMTs
- ~50 % increased light yield was observed
- This technique has been applied for the COSINE-100U

High light yield NaI(TI) detectors

NEON detector assembly

JINST 19, P10020 (2024)

JINST 19, P10020 (2024) w/o LG w/ LG	
(kg) (inch, D×L) (PEs/keV) (PEs/keV)	
DET-1 1.67 3×4 22.0±0.4 25.3±0.6 Total: 16.7 kg	5
DET-2 3.34 3×8 25.6 ± 1.1 27.8 ± 1.4	
DET-3 1.65 3×4 21.8±0.5 23.3±0.9 ~24 NPE/keV	
DET-4 3.34 3×8 23.7 ± 0.4 25.4 ± 0.7	
DET-5 3.35 3×8 22.4 ± 0.5 23.6 ± 0.8	
- DET-6 3.35 3×8 25.0 ± 0.5 27.9 ± 0.7 Basic Science (IBS)	

Experimental Site

Experimental Site

Physics Operation

- Physics run started since April 2022 (~ 2.5 years)
 - ❖ ~96% DAQ efficiency
- 623.3 days of ON data (72%)
- 185.5 days of OFF data (21%)
- Total 13,500 kg day exposure

Detector performance

Stable for two years operation Date

Low-energy event selection

- Develop waveform simulation package to describe lowenergy scintillation events
- Multi-variable machine learning technique applied to remove PMT-induced noise events

NIMA 1065 (2024) 169489

~ 7 counts/kg/keV/day @ 0.6 keV

Background understanding

- Background understanding based on our experiences on COSINE-100 dark matter search experiment
 - ❖ EPJC 78 (2018) 490; EPJC 81 (2021) 837; arXiv:2408.09806
- 3 keV 3 MeV are modeled

Reactor on vs off (Detector-6) for 1 year data

Seasonal variation of ²²²Rn level

Radon eye measurement by NEOS experiment

Calibration holes were opened

²²²Rn level is higher at summer

ics (CUP), Institute for Basic Science (IBS)

²²²Rn contribution modeling

Reactor on vs off (Detector-6)

Reactor neutrinos

Reactor photons

Reactor dark sector bosonic particles

Light Dark Matter Search

Through light dark matter (LDM) production

COHERENT LDM-nucleon scattering: PRL 130, 051803 (2023)

Theory study: JHEP 11 (2018) 066 $m_V = 3 m_X$, Asymmetric Fermion $m_V = 3 m_X$, Symmetric

Signal region: 1-10 keV

Light dark matter search

No signal excess – 90% confidence level upper limit

- •Best Limits achieved for the Light Dark Matter Search.
- •Below 1 MeV/c², NEON shows the best limit for DM-electron xsec and parameter for the Dark Photon mass.

CEVNS search status

- 0.6 keV (~15 PE) threshold with Boosted Decision Tree
- 0.2 keV (~ 5 PE) threshold is required
- Large afterglow (phosphorus) pulses from muons
- Neural network training for the number of isolated clusters (Nc = 4, 5, 6, 7)

CEVNS search status

- Factor ~1,000 reduction for 5 N_c (~100 counts/kg/keV/day)
- We need additional factor 10 reduction of background

- We are employing deep machine learning
 - Directly use raw waveform for the machine learning training

Inelastic neutrino nucleus scattering ($I\nu NS$)

IvNS cross section is \sim 4 order of magnitude smaller than ¹²⁷I inelastic scattering CEνNS arXiv:2004.04055 57.6 keV arXiv:2206.08590 **Cross section Expected event rate (Integrated)** 10⁵ $CE\nu NS$ **CEVNS** reactor $I_{\nu}NS$ 10^{3} counts [(kg year)]**CEVNS** ~1000 events/year @ NEON $\sigma [10^{-42} \, \mathrm{cm}^2]$ 10 $g.s. \rightarrow g.s.$ **IvNS** ~1700 events/year @ NEON CEvNS 40 Ar CEvNS 138 Cs 10^{-3} CEvNS 127 I Inelastic 40 Ar Inelastic 133 Cs 10^{-2} 10^{-1} 10^{0} 10^{1} Inelastic 127 I 10^{-5} Nuclear recoil energy (keV) 20 40 60 80

hysics (CUP),

Neutrino energy E. [MeV]

Institute for Basic Science (IBS)

Inelastic neutrino nucleus scattering

Expected Event rate @ NEON

First look for NEON data

- Expected ~ 2–3 sigma level measurement
- Can be enhanced by precise modeling of reactor-on and off data
 - Time-binned modeling (3 months binning)

Summary

- NEON is aiming to observe CE ν NS from reactor $\bar{\nu}_e$
- Stable running from April 2022 ~ present
- Good understanding of NaI(TI) detector's backgrounds
- Light dark matter search extended low-mass dark matter parameter space as low as 1 keV with the world best limit
- Low-energy analysis for CEνNS is actively ongoing
- IvNS search is started