Status and Perspectives of Coherent Elastic Neutrino Nucleus Scattering

Manfred Lindner

The simple Picture

Z-exchange of v with nucleus

 $Q_w = N - (1 - 4\sin^2\theta_w)Z \sim \mathbf{N}$

→ sees mostly neutrons momentum ← → wavelength

✓ Very low momentum✓ nucleus recoils as a whole

Coherence length ~ $1/E \rightarrow E_{\nu}$ below O(50) MeV \rightarrow low energy $E_{\nu} \leftarrow \rightarrow$ lower cross sections \rightarrow very high flux!

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{G_f^2}{4\pi} Q_w^2 M \left(1 - \frac{MT}{2E_{\nu}^2}\right) F(Q^2) \sim \mathbb{N}^2$$

$$\mathbb{N} \sim 40 \Rightarrow \mathbb{N}^2 = 1600 \Rightarrow \text{detector mass } 10t \Rightarrow \text{few kg}$$

Sources: Flux & Energy

Sources: Flux & Energy

Vitagliano, Tamborra, Raffelt Rev.Mod.Phys. 92 (2020) 45006 arXiv:1910.11878

Sources: Flux & Energy

 \rightarrow very different close to a nuclear power reactor and in a stopped π -beam or a supernova

 \rightarrow event rates: \otimes detector size $\leftarrow \rightarrow$ backgrounds

Neutrinos from Nuclear Reactors

Pion Decay at Rest (\pi-DAR) and Supernovae

Pulsed source of ν_e and anti- ν_μ

- timing \rightarrow background suppression
- up to 50MeV \rightarrow partial coherence
- Spallation Neutron Source (SNS) Oak Ridge National Laboratory
- Under construction: ESS European Spallation Source, Sweden

Spectrum of a typical 10kpc galatice SN

Gallo Rosso, Vissani, Volpe, JCAP 04:040 (2018)

CEvNS Experiments

C. Bonifazi, Neutrino 2022

1974 CEvNS Prediction by D. Freedman 2017: First observation with the CsI[Na] detector

Neutrino Alley at Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, USA

Pion decay at rest source:

- pulsed proton beam with 60 Hz $\sim 10^{20}$ protons on target/d (POT) up to 1.7 MW power
 - → about 0.29 v per POT
- background rejection via beam time structure

COHERENT

35 40 45

^{*} 30

Csl improvements: 300 + Data Residua + Data Residua V. CEVNS V. CEVNS scintillator response model V. CEVNS V. CEVNS Counts / µs nts / PE V. CEVNS V., CEVNS BRN + NIN BRN + NIN systematics Coun - and the second 30 PF → Ar: PRL 126 (2021) 012002 LAr single-phase detector 500 Data 200 - Total 400F CEVNS 24.4 kg, 20 keV_{nr} threshold 150 150-BRN ptra 300F Syst. Error signal: 3.5 significance 100 200 100 SS-Back 0.75 ttria (us) Reconstructed Energy (keVee) F₉₀ → Ge: arXiv: 2406.13806 **HPGe Germanium diodes** 12.5 Preliminary Preliminarv Total 10.0 8 x 2.2kg semi coaxial 7.5 counts (keVee)⁻¹ 15 sounts $(2\mu s)^{-1}$ fit residuals 5.0 110-150 eV FWHM pulser 10 2.5 resolution 0.0 -2.5-5.0

25

20

30

35

2.5

5.0

7.5

10.0

energy (keVee

12.5

15.0

17.5 20.0

-5

10

15

time (μs)

COHERENT

COHERENT Plans

Proton Power: Upgraded SNS
→ steadily increasing power
→2 MW

D₂0 detector

address leading systematic uncertainty

750-kg LAr target expect ~3000 events/SNS/year

JINST 16 P08048 (2021)

arXiv: 2204.04575

XENONnT (PandaX)

XENON

- First observation of CEvNS of astrophysical neutrinos with 2.7σ (3.2σ w/o S2pre/Δtpre)
- 11 events above backgrounds in 3.51 t×y exposure
- First step into the ultimate background for WIMP searches

also: some evidence seen in PandaX (2407.10892), LZ expected

Brokdorf NPP:

3.9 GW, 17.1 m 5 runs → shutdown of NPP

CONUS

4x 1kg HPGe PPC

- active mass: 3.72 kg
- Iow energy threshold: ~250 eV
- electrical PT cryocoolers at 85 K
- pulse shape discrimination (PSD)
- special layerd shield

Eur. Phys J. C81, 267 (2021)

BSM Results Run 1-4

Tensor/Vector NSI (non-standard interactions): limits the coupling parameter space

Light vector boson: limits the mass-coupling parameter space **Neutrino millicharged**: $|q_v| < 3.3 \times 10^{-12} e_0$ **Neutrino magnetic moment**: $\mu_v < 7.5 \times 10^{-11} \mu_B$

CONUS Run 5 result

Total exposure: 458d ON, 293d OFF

- combined limit (90% C.L.): factor ~2 above predicted (Lindhard quenching with k=0.162)
- further slight improvements expected (PSD, additional statistics,...)

Best limit in the fully coherent regime as a function of the quenching parameter

CONUS+

move to KKL Leibstadt: 3.6 GW, 20.7 m site characterization (n, μ 's, γ 's, Radon,...)

Upgrades:

- ASIC readout
- water cooling
- pulse shape
- 150 eV_{ee} threshold
- start of data taking 11/2023
- 1st reactor off 05/2024

➔ 1 year of data being analyzed... ...stay tuned

Another upgrade soon:

new 2.4 kg detectors

 \rightarrow mor emass

CENNS [cnts/yr]

 \rightarrow even lower threshold

NuGEN

- Reactor neutrino experiment at 11 m from 3.1 GW_{th} the Kalinin reactor in Russia.
 - Flux 5 x $10^{13} \,\overline{\nu} \text{s}^{-1} \text{cm}^{-2}$.
 - Distance to reactor can be varied 11-12 m.
- 1.5-kg p-type point contact High-Purity Germanium detector.
 - 50 m.w.e. overburden.
- Limits on CEvNS with 2021 and 2022 data.
 - Taking data with improved conditions since 2022.
 - Reduced background at low energy.

nuGEN collab., PRD 106 (2022) 5, L051101

A. Lubashevskiy, Magnificent CEvNS 2023

I. Nasteva, NEUTRINO2024

CONNIE

Angra 2 reactor (Brazil) 3.95 GWth, 30m Skipper CCD Array - 15eV_{ee} threshold, single e⁻ resolution

CEvNS search:
14.9 g*days ON and 3.5 g*days OFF
→ limit: 76 ⊗ SM
→ limits on millipharged particles

 \rightarrow limits on millicharged particles

arXiv:2403.15976

TEXONO / Sanmen

KuoSheng NPP (Taiwan) 2.9 GW, 28m, since ~2003

Upgrade to electro cooled HPGe, 200 eV thresho Working on updated analysis TAUP: DOI: https://doi.org/10.22323/1.441.0226

New site / collaborations

Sandmen NPP (China) 3.4 GW, 7m, 11m, 22m

RECODE: PPC HPGe $\sim 160 \text{eV}_{ee}$ threshold

- 1kg / 10kg scales, based on CDEX1, CDEX10
- first physics: 2025 **RELICS:** LXe
- 32kg fiducial mass
- 2-phase LXe

NCC-1701

Dresden-II NPP (USA) 2.96 GW_{th}, 8m 3kg HPGe 200 eV_{ee} v-flux: 8.1 \otimes 10¹³ v/cm²/s

claim excess in reactor-on data

- depends a lot on quenching factor $\leftarrow \rightarrow$ CONUS quenching factor
- CONUS should have seen a signal if NCC-1701 QF were correct
- Migdahl effect → orders of magnitude weaker Giunti et al: 2307.12911
- backgrounds (neutrons!)

Μ

More Upcoming or R&D

I. Nasteva, NEUTRINO2024

Experiment	Detector	Mass	Threshold	Reactor/	Distance	Thermal	Neutrino	Location
				source	to source	power	flux v/cm²/s	
COHERENT	Csl, Ar, Ge, Nal	15-185 kg	6.5-20 keVnr	πDAR	19-28 m		4.3*10 ⁷	USA
nuESS*	Csl, Ge, Xe, Ar			πDAR				Sweden
CICENNS*	CsI(Na)	300 kg	2 keVnr	πDAR	10.5 m		2*10 ⁷	China
Atucha-II	Si CCDs	2.5 g	40 eVee	Atucha-II	12 m	2 GW _{th}	2*10 ¹³	Argentina
BULLKID*	Si/Ge cryogenic	20 g	160 eV					Italy
CONNIE	Si CCDs	0.5 g	15 eVee	Angra-II	30 m	3.9 GW _{th}	7.8*10 ¹²	Brazil
CONUS	HPGe	3.74 kg	210 eVee	Brokdorf	17 m	3.9 GW _{th}	2*10 ¹³	Germany
CONUS+	HPGe	3.74 kg	150 eVee	Leibstadt	20.7 m	3.6 GW _{th}	1.45*10 ¹³	Switzerland
MINER*	Ge, Si, Al ₂ O ₃	1 kg	100 eVnr	TRIGA /	2-10 m	1 MW _{th}	~1*10 ¹²	USA
	cryogenic			HFIR*				
NCC-1701	HPGe	3 kg	200 eVee	Dresden-II	8 m	2.96 GW _{th}	8.1*10 ¹³	USA
NEON	Nal(TI)	16.7 kg	200 eVee	Hanbit	23.7 m	2.815 GW _{th}	~1*10 ¹³	Korea
NEWS-G3*	Ar+2%CH4			tbc				Canada
NUCLEUS*	CaWO ₄ , Al ₂ O ₃	10 g	20 eVnr	Chooz	77 m,	2x2.45 GW _{th}	1.7*10 ¹²	France
	cryogenic				102 m			
NUXE*	LXe	10 kg		tbc				
nuGEN	HPGe	1.4 kg	200 eVee	Kalinin	11-12 m	3.1 GW _{th}	5.4*10 ¹³	Russia
RED-100	LXe, Lar*	200 kg		Kalinin	19 m	3.1 GW _{th}	1.35*10 ¹³	Russia
RECODE*	HPGe	1-2,10 kg	160 eVee	Sanmen	11, 22 m	3.4 GW _{th}	Up to	China
							5.6*10 ¹³	
RELICS*	LXe	50 kg	1 keVnr	Sanmen	22 m	3.4 GW _{th}	1.4*10 ¹³	China
Ricochet*	Ge, Zn, Al, Sn	680 g	160 eVee,	ILL-H7	8.8 m	58 MW _{th}	1.6*10 ¹²	France
	cryogenic		300 eVnr					
SBC*	Ar	10 kg	100 eVee	tbc				USA
TEXONO	HPGe	1.43 kg	200 eVee	Kuo-Sheng	28 m	2.9 GW _{th}	6.4*10 ¹²	Taiwan

Future

- CEvNS prediction 1974 (Freedman)
- 1st observation: COHERENT 2017
- 2024: CEvNS of solar neutrinos @XENONnT
- ... CEvNS signal of reactor neutirnos around the corner...

➔ foreseeable high statistics CEvNS future

- pi-DAR:
 - larger detectors
 - more intense breams
- solar neutrinos:
 - next generation LXe dark matter detectors (XLZD)
- reactor: upscaling of existing CONUS technology

What is CEvNS good for?

High statistics CEvNS experiments touch many interesting topics:

- Large cross sections \rightarrow small neutrino detectors \rightarrow faster progress, applications
- Clean SM predictions for cross sections \rightarrow BSM sensitivity
- Sensitivity to neutrino magnetic moment and $\langle r_v^2 \rangle \rightarrow BSM$ sensitivity
- Possibility to measure $\sin^2 \theta_W$ at low energies \rightarrow BSM sensitivity
- Masurements of neutron formfactors (nuclear structure) \rightarrow unique
- Nuclear reactor monitoring (non-proliferation) \rightarrow applications
- Precision flavor-independent neutrino flux measurements for oscillation experiments → synergy with other experiments
- Sterile neutrino searches \rightarrow BSM
- Energy transport in supernovae \rightarrow important for next SN
- SN neutrino detection \rightarrow SNEWS, pointing, ...
- Input for dark matter direct detection (neutrino floor) \rightarrow solar neutrinos
- dark matter physics \rightarrow BSM

BSM Physics as NSI's

NSI's $\leftarrow \rightarrow$ BSM at high scales ... which is integrated out EAB Z', new scalars, ... $\rightarrow \varepsilon_{ii}$ $\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$ $\frac{d\sigma}{dT}(E_{\nu},T) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2}\right) \times \left\{ \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) + Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV}) \right]^2 + \frac{1}{2} \left[Z(g_V^n + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{ee}^{uV} + \varepsilon_{e$ $\sum \left[Z(2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) + N(\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) \right]^2 \right\}$ Barranco et al. 2005

Competitive method to test TeV scales $\varepsilon = 0.01 \leftrightarrow TeV$ scales

 ν_{β}

Neutrino magnetic Moment in the $SM + v_R$

Dirac:
$$\mathcal{L} \supset \mu_{\nu} \overline{\nu}_{L} \sigma_{\mu\nu} \nu_{R} F^{\mu\nu} + m_{\nu} \overline{\nu}_{L} \nu_{R} + \text{H.c.}$$

 μ_{v} and v mass operators have the same chiral structure $\rightarrow \mu_{v}$ typically proportional to m_{v}

SM+v_R:
$$\mu_{\nu} = \frac{eG_F m_{\nu}}{8\sqrt{2}\pi^2} = 3 \times 10^{-20} \mu_B \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right)$$

Transition mag. moment for Majorana v's:

$$\mu_{ij} = -\frac{3eG_F}{32\sqrt{2}\pi^2} (m_i \pm m_j) \sum_{\ell=e,\mu,\tau} U_{\ell i}^* U_{\ell j} \frac{m_{\ell}^2}{m_W^2} \twoheadrightarrow \mathcal{O}(10^{-23}) \ \mu_B$$

W+

→ many BSM models significantly enhance μ_{ν} e.g. MSSM with L violation by R-parity violation ~ λ '

$$\mu_{\nu} \sim \lambda^{\prime 2} / (16\pi^2) m_{\ell}^2 A_{\ell} / M_{\tilde{\ell}}^4$$

BUT $\rightarrow \mu_{\nu} \leq 10^{-13} \mu_{B}$

 $A_{l} \longleftrightarrow \rightarrow \text{SUSY breaking}$ trilinear coupling $M_{\tilde{\ell}} \longleftrightarrow \rightarrow \text{slepton mass}$

Rather general: TeV-ish BSM models allow/predict $\mu_v \leq 10^{-13} \mu_B$

Pushing higher often leads to two problems:

- light new particles that should have been discovered
- intrinsic relation between magnetic moment and radiative neutrino masses

→ neutrino mass shifts which are much bigger than allowed w/o fine-tuning

 \rightarrow observation would be a major discovery $\leftarrow \rightarrow$ flavour!

Millicharges

But: Current CEvNS limits are much weaker than the best limit above...

Nuclear Structure with coherent Scattering

DAR sources partially coherence **←** → combine with reactor measurements

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T} \approx \frac{\mathrm{G}_{\mathrm{F}}^{2}\mathrm{M}}{4\pi} \left(1 - \frac{\mathrm{M}T}{2\mathrm{E}^{2}}\right) \left[\mathrm{N}F_{\mathrm{N}}(\mathrm{q}^{2}) - \mathrm{Q}_{\mathrm{W}}\mathrm{Z}F_{\mathrm{Z}}(\mathrm{q}^{2})\right]^{2}$$

Nuclear form factors F_{N,Z}(q) ∼ Fourier transforms of N & P densities → resolve nuclei (neutrons) in neutrino light

Fit recoil **spectral shape** to determine the F(Q²) moments (requires very good energy resolution, good systematics control)

Nuclear Models and NSI's

Klein-Nystrand form factor

$$F_W(|\vec{q}|^2) = 3\frac{j_1(|\vec{q}|R_A)}{|\vec{q}|R_A} \left(\frac{1}{1+|\vec{q}|^2 a_k^2}\right)$$

→ relies on a surface-diffuse distribution folding a short-range Yukawa potential with range a_k over a hard sphere distribution with radius R_A

 $\langle r^2 \rangle_{\mathrm{KN}} = \frac{3}{5} R_A^2 + 6a_k^2$

Aristizabal Sierra, Liao, Marfatia, JHEP 06 (2019) 141

allowed regions in the NSI case and for two choices of the rms neutron radius

New Bosons

Heavy: → partially covered by NSI's (being integrated out...)
→ interactions of new heavy bosons with SM bosons

Light: → simplified models

- new light scalar/vector mediators
- universal couplings

- light scalar boson
$$\phi$$
 : $\frac{d \sigma_{\phi}}{dT} = \frac{g_{\phi}^{4} (14N+15.1Z)^{2} M^{2}T}{4 \pi E_{v}^{2} (2MT+m_{\phi}^{2})^{2}}$
- light vector boson Z': $\frac{d \sigma_{z}'}{dT} = \left(1 - \frac{3g_{z}^{v} g_{z}^{q} (Z+N)}{\sqrt{2}G_{F}Q_{SM} (2MT+m_{z}^{2})}\right)^{2} \frac{d \sigma_{SM}}{dT}$

→ often connected to dark sector = DM

Precise Measurement of $sin^2\theta_W$ at low E

CEvNS cross-section: $\sigma \sim N - [(1 - 4*sin^2\theta_w) Z]^2$

SM: running $\sin^2 \theta_W$ \rightarrow sensitivity to light particles in loops

Beware – models often in conflict with other measurements:

- g-2
- dark matter searches
- astroparticle physics

^{• •••}

Even more fundamental...

Elementary reaction: neutrinos interact with quarks via Z exchange

<u>requirements:</u> absence of individual recoil scattering in phase

Form factors and x-sections ← → quark level
 ← → limitations of factorization σ ⊗ F(q²)

fafnir.phyast.pitt.edu

- CEvNS in QFT → conceptually very interesting questions see e.g. Akhmedov, Arcadi, ML, Vogl, JHEP 1810 (2018) 045, arXiv:1806.10962
 role of the recoil of constituents in quantized picture
 - semi-classical factorization of QFT process into (cross-section) * $F(q^2)$?
- coherence length in QFT approach Egorov, Volobuev: 1902.03602

Summary

CEvNS has become a hot topic ←→ many physics topics

citations of original paper by D. Freedman

• Outlook:

- further observations of CEvNS in the pipeline
- higher statistics \rightarrow growing precision (good time-scales & costs)
- growing number of studies discussing BSM scenarios
- interplay of HEP, astroparticle analyses (DM...) and nuclear physics

rising experimental and theoretical activity!