Review of recent Heavy-Ion Physics results at the LHC

43rd International Symposium on Physics in Collisions 22–25 October 2024, Athens, Greece

L. Dello Stritto (CERN)

Heavy-ion collisions

• Why heavy-ion collisions?

Heavy-ion collisions generate **temperatures** millions of times higher than the core of the Sun (~10¹² K) and **energy densities** on the order of ~GeV/fm³.

Study of the fundamental properties of matter under extreme conditions. Creation of the **quark-gluon plasma (QGP)**.

Study of new physics through ultra-peripheral collisions (UPC)

Very clean environment that allows us to study rare processes.

Creation of Quark Gluon Plasma

Quark-gluon plasma (QGP) = deconfined strongly-interacting QCD matter with color degrees of freedom

- QGP lifetime ~ few fm/*c.*
- Study of the QGP performed through indirect signals.

Properties of the stream of free particles reaching the detector.

Heavy-ion collisions at the LHC

Collective motion in heavy-ion collisions

- Initial spatial anisotropy \rightarrow pressure gradients lead to final momentum anisotropy of the produced particles.
- The QGP thermalizes developing **collective behavior.**

• Expansion of anisotropic distribution in momentum space into Fourier series:

• Probe fundamental properties of the QGP: viscosity, degree of collectivity, and thermalization efficiency.

Charged hadrons flow

- Good agreement between ALICE and ATLAS results.
- LHCb results in the forward region show weaker v_2 .

- **AMPT simulations**: string melting model that produces a dense system of partonic matter. It includes quark coalescence.
- AMPT simulations overestimate the results at low p_T^2 (<2.5 GeV/*c*).

Heavy-flavour hadrons flow

- Sizable ν² measured for **charm** and **beauty** hadrons as well.
- **Mass ordering** clearly visible (heavier particles flow less). v_2 (charded hadrons) > v_2 (prompt $|D^0\rangle > v_2$ (non prompt D^0)
- Good agreement within uncertainties between ALICE and CMS results.

Heavy-flavour hadrons flow

• Qualitatively good agreement between theory and data.

Use comparison to understand which physics effects are relevant.

- 1. Radiative energy loss important to describe intermediate and high p_T .
- 2. Hadronization via recombination crucial to describe low and intermediate p_T .

Antinuclei flow

- Further constraint on hadronization from antinuclei measurements.
	- ³He measurement in Run3 more differential and precise than in Run 2. **___**
		- Possibility to discriminate between different model predictions.

- Blast-wave model tends to underestimate the data.
- Better description provided by coalesce model.

In-medium energy loss

Fragmentation Fragmentation • Interaction with the medium constituents via **in vacuum in medium** radiative and collisional processes. No modification Pb Pb $R_{AA} = 1$ $R_{AA} = \frac{1}{\langle N_{\text{coll}}\rangle} \frac{\mathrm{d}^2 N_{AA} / \mathrm{d} p_{\text{T}} \mathrm{d} y}{\mathrm{d}^2 N_{pp} / \mathrm{d} p_{\text{T}} \mathrm{d} y}$ between pp and PbPb. p $\mathbb {V}$ p Suppression in heavy-ion R_{AA} < 1 collisions, due to energy loss in the QGP. LBT: [Phys. Lett. B 777 \(2018\) 255](https://www.sciencedirect.com/science/article/pii/S0370269317310006?via%3Dihub) [arXiv:2211.15257](https://arxiv.org/abs/2211.15257) Quenched jet Pb+Pb, 0.50 nb⁻¹ pp , 25 pb^{-1} **ATLAS** \sqrt{s} = 5.02 TeV $\sqrt{s_{\text{min}}}$ = 5.02 TeV $ln|$ < 2.5 $R_{\cancel{\infty}}$ Larger suppression in central events. 0.8 0.6 • Fairly good description of the theoretical models. • Hydrodinamic evolution of the medium • Elastic and inelastic interactions with the medium 0-20% 20-30% 30-50% 50-80 0.2 **ATLAS LBT** 10^2 $p_{_{\mathrm{T}}}\,[\mathrm{GeV}]$ 10

D meson energy loss

What about heavy flavour?

• Theoretical models catch the data.

D meson energy loss

What about heavy flavour?

• Theoretical models that include **quark coalescence** and **collisional** and **radiative energy loss** catch the data.

Luigi Dello Stritto, PIC 2024, 22/10/2024

B meson energy loss

[arXiv:2409.07258](https://arxiv.org/abs/2409.07258)

- Hint of lower suppression for both B⁺ and B_s⁰ below 10 GeV/*c*.
- Compatible suppression at high p_T .

• Further constraints on the bottom quark energy loss mechanism and hadronization in the QGP.

Charmonia

- Agreement among results from LHC experiments.
- Complementary p_T regions covered.

• Reduced suppression at low p_T attributed to a regeneration contribution.

Luigi Dello Stritto, PIC 2024, 22/10/2024

Excited quarkonia states

- The sequential melting of quarkonium as QGP thermometer
- $R_{AA}(Y(1S)) > R_{AA}(Y(2S)) > R_{AA}(Y(3S))$ • Excited states are more suppressed than the ground state.
- R_{AA} smoothly decreases with increasing centrality.

• Good agreement between data and theoretical models with color screening, regeneration and temperaturedependent binding energy.

Luigi Dello Stritto, PIC 2024, 22/10/2024

Dielectron mass spectrum

Still about the QGP temperature

- Dielectrons (e⁺e⁻) are produced during all stages of the collision.
- Unaffected by strong final-state interactions.

• Thermal radiation from quark-gluon plasma: ~e^{-m/T} Measurement of the QGP temperature.

Thermal radiation from hadron gas (HG) via in-medium Pseudoscalar and vector mesons $(\pi^0, \eta, \eta', \omega, \phi)$ **Semi-leptonic decays of HF hadrons Thermal radiation from quark-gluon plasma**

Dielectron mass spectrum

[arXiv:2308.16704](https://arxiv.org/abs/2308.16704)

- Implementation of a hadronic decay cocktail to be subtracted to the full spectrum to measure the dielectron thermal yield.
- Measurement of the thermal dielectron in the intermediate mass range (1.1 – 2.7 GeV/*c* 2).

only HF-dielectron production relevant in this range.

- Ratio between data and hadron cocktail compatible with unity
	- QGP radiation in the intermediate mass range (IMR) is absorbed by HF cocktail uncertainty.

Larger data sample and better control of HF background are needed to quantify the excess!

Jet observables

Vacuum fragmentation Vacuum fragmentation

- In the medium, partons lose energy and change direction through medium-induced gluon radiations and collisions with medium constituents.
- **Various jets observables** available to probe the interactions with the medium:

Luigi Dello Stritto, PIC 2024, 22/10/2024

$High-p_T$ hadrons and jets allow to explore different aspects of jet quenching:

- \triangleright hadrons are sensitive principally to energy loss in the hardest branch of the jet shower.
- \triangleright jets are sensitive more broadly to modification of the shower.

- Jet *RAA* exhibits larger suppression than hadrons at the same ρ_{T} .
	- \triangleright Single particle vs multi-particle energy loss.
	- ➢ Jet broadening.

Jet R_{AA}

 \triangleright High- p_{T} hadron selection bias.

Jet R_{AA} - substructures

[Phys. Rev. C 107 \(2023\) 054909](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.107.054909) More info on jet suppression from jet substructures!

- *RAA* decreases smoothly with increasing *r^g* .
- Lack of p_T dependence of R_{AA} for jets with similar structure.

- Strong dependence of jet suppression on *r^g* .
	- More collimated jets lose less energy and are less suppressed.

- Jet yield enhancement at $p_{T, jet}$ < 20 GeV/*c*. energy recovery in low-momentum jets.
- Jet yield suppression at $20 < p_{T, jet} < 60$ GeV/*c*.
	- medium induced yield suppression due to energy loss.
- Jet yield rising trend at $p_{T, jet}$ > 60 GeV/*c*.
	- negligible quenching effect.

- **Hybrid**: elastic energy loss (i.e. 'Moliere' scattering) medium response with and without wake.
- **JEWELS**: collisional and radiative parton energy loss mechanisms. Medium response effects via treatment of recoils.

- The rising trend is qualitatively described by all the predictions.
- **Hybrid model with wake effect** and JEWEL with recoils on capture the yield enhancement at low p_{T} .
	- Medium response could be responsible for enhancement.
- **Hybrid model** and **JEWEL** predictions overestimate the suppression at high ρ_{T} .

- Angle (φ) of the recoil jet relative to trigger track axis:
	- **In vacuum**: transverse broadening due to gluon emissions (Sudakov broadening).
	- **In medium**: deflection of the recoiling jet due to the interaction with the medium.

$$
\begin{array}{c}\n\mathbf{Recoil jet} \\
\hline\n\mathbf{Recoil jet} \\
\hline\n\mathbf{Recoil} \\
\hline\n\mathbf{Recoli} \\
\hline\n\mathbf{Recoli
$$

$$
I_{\rm AA} \equiv \frac{\Delta_{\rm recoil} (p_{\rm T})_{\rm AA}}{\Delta_{\rm recoil} (p_{\rm T})_{\rm pp}}
$$

- Recoil jet broadening and jet yield enhancement in Pb-Pb for $10 < p_{\text{T, jet}} < 20 \text{ GeV}/c$.
- Recoil jet yields suppression in Pb-Pb for $30 < p_{T, jet} < 50$ GeV/*c*.

Luigi Dello Stritto, PIC 2024, 22/10/2024

- Angle (φ) of the recoil jet relative to trigger track axis:
	- **In vacuum**: transverse broadening due to gluon emissions (Sudakov broadening).
	- **In medium**: deflection of the recoiling jet due to the interaction with the medium.

$$
\begin{array}{c}\n\mathbf{Recoil jet} \\
\hline\n\mathbf{Reccoil jet} \\
\hline\n\mathbf{Recoil} \\
\hline\n\mathbf{Recoil} \\
\hline\n\mathbf{Recoli} \\
\hline\n\mathbf{Recoli
$$

$$
I_{\rm AA} \equiv \frac{\Delta_{\rm recoil} (p_{\rm T})_{\rm AA}}{\Delta_{\rm recoil} (p_{\rm T})_{\rm pp}}
$$

- **Hybrid model** captures the yield enhancement at low p_T but no broadening effect predicted (even with wake on).
- JEWEL with recoils on describes the I_{AA} in all the measured p_T range, including the broadening effect.

Observed broadening consistent with medium response All features of distribution reproduced by JEWEL with recoils on.

rather than Molière scattering.

Luigi Dello Stritto, PIC 2024, 22/10/2024

Jet axis decorrelation

• Study of jet-axis decorrelation through the observable ∆*j*:

$$
\Delta j = \sqrt{(\phi_{\text{E-scheme}} - \phi_{\text{WTA}})^2 + (\eta_{\text{E-scheme}} - \eta_{\text{WTA}})^2}
$$

- E-scheme axis from four-vector sum at each step of clustering:
	- \triangleright average energy flow of jet
	- \triangleright sensitive to soft radiation
- Winner-Take-All (WTA) set axis to harder prong at each step of clustering:
	- \triangleright leading energy flow of jet

Modifications in E-scheme $=$ WTA correlations as a probe of the jet-medium interactions.

Jet axis decorrelation

- Relative enhancement at lower and suppression at higher ∆*j* in Pb-Pb w.r.t. pp collisions.
- Same ∆*j* trend observed when comparing Pb-Pb central collisions with peripheral collisions.
- ➢ Pb–Pb distribution dominated by quark-initiated jets?
	- gluon-initiated jets are expected to interact more with the medium.

• **Hybrid**, **JEWEL** and JETSCAPE MATTER+LBT catch the data.

Energy-energy correlators

- EECs measure how energy is distributed within a jet.
- Ability to separate with a single observable, perturbative and non perturbative regions.

Angular distance pairs of particles within the jet, weighted by the product of their momenta.

• In heavy-ions collisions, EECs proposed as probe of medium color coherence and jet wake effect.

Energy-energy correlators

- Models with jet wake and color coherence show qualitatively similar behavior as data but cannot describe it.
- Pb-Pb enhancement in large ∆r non described by any model.
- Hadron, transition, and free quark/gluon regions visible in EECs.
- Pb-Pb enhancement in small ∆r (hadron regime). Energy loss moves the peak to smaller Δr .

Flash slide on small systems

• Several effects discussed in this talk were considered as **unique signatures of the QGP formation in heavy-ion collisions** w.r.t. the basiline provided by small systems.

• Hadronic colliders revealed a totally different situation: **presence of phenomena so far associated to QGP formation in hadronic small systems** as well.

UPC collisions

• Ultraperipheral collisions (UPCs) occur when a virtual photons interact w/o nuclear overlap.

- Absence of hadronic interactions.
	- cleaner and easier to interpret final state

- Access to parton distribution functions (PDFs). probe the parton distribution functions over a wide range of Bjorken *x*.
- Access to rare processes.
	- photon-photon collisions, photonuclear interactions

J/Psi in UPC

000000

- + Pb collisions are sensitive to gluon distribution inside nuclei:
	- Coherent production: probe the averaged gluon density.
	- Incoherent production: probe the local gluon density fluctuation (gluon saturation).

• **Higher-x** better described by Glauber calculation (STARlight).

[PRL 132 \(2024\) 162302](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.162302)

- Models cannot describe the data
- Interplay between shadowing and gluon saturation needed to catch the data.

$D⁰$ photonuclear production in UPC

- Photonuclear D^0 production in UPC collisions.
- Xn0n Pb-Pb events with rapidity gap: (measurement performed also in 0nXn)

- Clear rapidity dependence of the $D⁰$ cross-section with respect to the incoming photon direction.
- Constraints on PDFs with a clean probe in a large regime of $(x,Q²)$.

Magnetic monopole search in UPC

Luigi Dello Stritto, PIC 2024, 22/10/2024

LHC program timeline

Conclusions

- Heavy-ion collisions provide a unique environment to explore fundamental aspects of QCD.
- Experimental evidences confirm the creation of a hot nuclear medium with deconfined color charges (QGP).
	- ➢ Understand the initial state effects.
		- Initial anisotropy converted into anisotropy of the final state particles. QGP behaves like a liquid.
			- ➢ Probing QGP with penetrating particles **Energy redistribution in the medium through both** radiative and collisional energy exchange.
				- ➢ UPC to probe PDFs and to explore new physics.

Luigi Dello Stritto, PIC 2024, 22/10/2024

Heavy-ion physics program will continue throughout the entire life of the LHC! Detector upgrades to enable precise measurements of new observables Thank you for your

 \sim

Backup

Theoretical models

But more importantly: different implementations and input parameters.

TAMU: [PLB 735 \(2014\) 445](https://www.sciencedirect.com/science/article/pii/S0370269314003591) LGR: [EPJC 80 \(2020\) 671](https://epjc.epj.org/articles/epjc/abs/2020/07/10052_2020_Article_8243/10052_2020_Article_8243.html) PHSD: Phys. Rev. C [78 \(2008\) 034919](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.78.034919) Catania: [PLB 821 \(2021\) 136622](https://www.sciencedirect.com/science/article/pii/S0370269321005621) LBT: [PRC 94 \(2016\) 014909](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.94.014909) LIDO: [PRC 98 \(2018\) 064901](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.98.064901) Langevin: [Chinese Phys. C](https://iopscience.iop.org/article/10.1088/1674-1137/abadee) 44 (2020) 114101 CUJET3: [JHEP 02 \(2016\) 169](https://link.springer.com/article/10.1007/JHEP02(2016)169) MC@sHQ+EPOS2: [PRC 89 \(2014\) 014905](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.89.014905)

J/Psi in UPC

- γ + Pb collisions are sensitive to gluon distribution inside nuclei:
	- \triangleright Coherent production: probe the averaged gluon density.
	- ➢ Incoherent production: probe the local gluon density fluctuation (gluon saturation).

[PRL 132 \(2024\) 162302](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.132.162302)

- Models cannot describe the data
- Interplay between shadowing and gluon saturation needed to catch the data.

Charm quark hadronization

-
- 1. Modified hadronization Similar enhancement in pp collisions also for $\mathbf{p} = \left(\sum_{i=1}^{n} a_i \mathbf{1}_{i+1} + \sum_{i=1}^{n} a_i \mathbf{1}_{i+1} + \sum_{i=1}^{n} a_i \mathbf{1}_{i+1} + \sum_{i=1}^{n} a_i \mathbf{1}_{i+1} \right)$

• Pure fragmentation models underestimates most of the charm baryon to meson ratios.

Baryon-to-meson ratio vs multiplicity

• Increasing trend with multiplicity.

• $\Lambda_c^{\ +}/D^0$ ratios in pp are enhanced w.r.t. e⁺e⁻ collisions, also in the lowest multiplicity interval.

Fragmentation fractions of charm quarks are not a universal process among different collision systems.

Baryon-to-meson ratio vs multiplicity

- **PYTHIA CR-BLC** = string formation beyond the leading colour approximation. Baryon production enhanced via **junction**. [Christiansen & Skands, JHEP 1508 \(2015\) 003](https://link.springer.com/article/10.1007/JHEP08(2015)003)

- **CE-SH + RQM** = canonical ensemble statistical hadronization model including feed-down from additional excited baryon states predicted by the Relativistic Quark Model (RQM). Hee [& Rapp, PLB 795 117-121 \(2019\)](https://www.sciencedirect.com/science/article/pii/S037026931930382X)

Integrated prompt Λ_c^{+/D^0} baryon-to-meson ratio

p─Pb: [Phys. Rev. C](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.104.054905) **104**, 054905

Pb-Pb: [arXiv:2112.08156](https://arxiv.org/abs/2112.08156)

- The p_{T} -integrated $\Lambda_{\text{c}}^{+}/\text{D}^0$ ratio vs multiplicity in pp, p–Pb and Pb─Pb measurements are compatible with each other.
- Re-distribution of p_T that acts differently for baryons and mesons. No modification of overall ρ_{T} -integrated yield.

Same mechanism in all collision systems? Modified hadronization? Radial flow?

Flow in heavy-ion collisions

-
- dN N $\sum_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ in momentum and angular distribution. $d\phi$ = \boldsymbol{N} $\frac{1}{2\pi}$ [1 + 2 \sum $n=1$ ∞ $v_n \cos(n(\phi - \Psi_{RP}))$]

2. Collectivity **EXECUTE:** Collectively expanding medium: modification

- Mass ordering at low p_{T} (heavier particles flow less).
- Baryon-meson splitting at intermediate p_T : flow + recombination at the quark level

Flow in small systems

2. Collectivity

- Mass ordering and baryon-meson splitting observed in high multiplicity p-Pb and pp collisions as well.
- Model with hydrodynamics, quark coalescence and jet fragmentation describes the data.

Flow in the heavy-flavour sector

2. Collectivity

Do heavy quarks participate in the collective expansion?

- Non zero anisotropic flow measured in Pb-Pb collisions for **charm** heavy flavour.
- $v_2(\pi^{+,-}) > v_2(\text{prompt } D^0) > v_2(J/\Psi)$ at intermediate p_T . larger flow for light quarks.

Flow in the heavy-flavour sector – Small systems

Charm quark anisotropic flow measured in p-Pb and pp collisions as well.

Flow in the heavy-flavour sector – Small systems

Charm quark anisotropic flow measured in p-Pb and pp collisions as well.

Beauty quark anisotropic flow in small systems compatible with 0.

Quenching

3. Energy loss **Fragmentation in vacuum Fragmentation in medium**

- Measurements presented until now are consistent with the presence of a small-sized medium in pp and p-Pb.
- Absence of suppression in p-Pb collisions.
- Quenching in small systems yet unobserved.

Quenching

$$
R_{AA} = \frac{1}{\langle N_{\text{coll}}\rangle} \frac{\mathrm{d}^2 N_{AA} / \mathrm{d} p_{\text{T}} \mathrm{d} y}{\mathrm{d}^2 N_{pp} / \mathrm{d} p_{\text{T}} \mathrm{d} y}
$$

3. Energy loss **Fragmentation in vacuum Fragmentation in medium**

- Measurements presented until now are consistent with the presence of a small-sized medium in pp and p-Pb.
- Absence of suppression in p-Pb collisions.
- Quenching in small systems yet unobserved.

Integrated prompt $\Lambda_c^{+/}D^0$ baryon-to-meson ratio

p─Pb: [Phys. Rev. C](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.104.054905) **104**, 054905

Pb-Pb: [arXiv:2112.08156](https://arxiv.org/abs/2112.08156)

- The p_{T} -integrated $\Lambda_{\text{c}}^{+}/\text{D}^0$ ratio vs multiplicity in pp, p–Pb and Pb─Pb measurements are compatible with each other.
- Re-distribution of p_T that acts differently for baryons and mesons. No modification of overall ρ_{T} -integrated yield.

Same mechanism in all collision systems? Modified hadronization? Radial flow?

Integrated prompt $\Lambda_c^{+/}D^0$ baryon-to-meson

- The p_T -integrated Λ_c^{+}/D^0 ratio vs multiplicity in pp, p–Pb and Pb–Pb measurements are compatible with each other.
- Re-distribution of p_T that acts differently for baryons and mesons. No modification of overall p_T -integrated yield.

Same mechanism in all collision systems? Modified hadronization? Radial flow?

Flow in small systems

2. Collectivity

- Mass ordering and baryon-meson splitting observed in p-Pb and pp collisions as well.
- Model with hydrodynamics, quark coalescence and jet fragmentation describes the data.

Flow in the heavy-flavour sector

2. Collectivity Do heavy quarks partecipate in the collective expansion?

Luigi Dello Stritto, PIC 2024, 22/10/2024

Quenching

3. Energy loss **Fragmentation in vacuum Fragmentation in medium**

- Measurements presented until now are consistent with the presence of a small-sized medium in pp and p-Pb.
- Absence of suppression in p-Pb collisions.
- Quenching in small systems yet unobserved.

Jets flow

- Understanding the path-length dependence of energy loss
- Similar p_T and centrality dependence of jet and charged-particle v_2 .

Luigi Dello Stritto, PIC 2024, 22/10/2024

Recoiling jet broadening

- Angle (φ) of the recoil jet relative to trigger track axis:
	- **In vacuum**: transverse broadening due to gluon emissions (Sudakov broadening)
	- **In medium**: deflection of the recoiling jet due to the interaction with the medium.

- Recoil jet broadening for $10 < p_{T, jet} < 20$ GeV/*c*.
- No significant deviations for $20 < p_{T, jet} < 30 \text{ GeV}/c$.
- Recoil jet yields suppression for $30 < p_{T, jet} < 50$ GeV/*c*.

Luigi Dello Stritto, PIC 2024, 22/10/2024

Recoiling jet broadening

- Angle (φ) of the recoil jet relative to trigger track axis:
	- **In vacuum**: transverse broadening due to gluon emissions (Sudakov broadening)
	- **In medium**: deflection of the recoiling jet due to the interaction with the medium.

- Recoil jet broadening for $10 < p_{T, jet} < 20 \text{ GeV}/c$.
- No significant deviations for $20 < p_{T, jet} < 30 \text{ GeV}/c$.
- Recoil jet yields suppression for $30 < p_{T, jet} < 50$ GeV/*c*.

Luigi Dello Stritto, PIC 2024, 22/10/2024

$$
I_{\rm AA} \equiv \frac{\Delta_{\rm recoil} (p_{\rm T})_{\rm AA}}{\Delta_{\rm recoil} (p_{\rm T})_{\rm pp}}
$$

JETSCAPE: Phys. Rev. C 107 (2023) [034911](https://journals.aps.org/prc/abstract/10.1103/PhysRevC.107.034911) **JEWEL**: Eur. Phys. J. C 74, 2762 [\(2014\)](https://link.springer.com/article/10.1140/epjc/s10052-014-2762-1) **Hybrid Model (no wake)**: JHEP 01 [\(2019\)](https://link.springer.com/article/10.1007/JHEP01(2019)172) 172 **Hybrid Model (wake)**: JHEP 02 [\(2022\)](https://link.springer.com/article/10.1007/JHEP02(2022)175) 175

IETSCAPE with Pb-Pb tune: 1903.07706, Phys.Rev.C 107 (2023) 3 Multi-stage energy loss MATTER+LBT

IEWEL:

arXiv:1311.0048, https://jewel.hepforge.org/

Includes collisional and radiative parton energy loss mechanisms in a pQCD approach. medium response effects via treatment of 'recoils'

Hybrid Model:

[HEP 02 (2022) 175, [HEP01(2019)172

With/without elastic energy loss (i.e 'Moliere' scattering) medium response via with and without wake.

Jet substructures

• Jets narrower in Pb-Pb compared to pp.

or

• Wider jets less likely to survive QGP.

• Significantly more jet narrowing in balanced jets.

Quenching

Luigi Dello Stritto, PIC 2024, 22/10/2024

Quenching

Luigi Dello Stritto, PIC 2024, 22/10/2024