

Direct Neutrino Mass Measurement

Christoph Köhler (TUM), PIC 2024, 23.10.2024

Neutrino mass

- Neutrino oscillations → non-zero mass
- Smallness, ordering and origin of mass?

Determination method

Neutrinoless ββ-decay

World leading: KamLAND-Zen $T_{1/2} > 3.8e26 \text{ y} \Rightarrow m_{\beta\beta} 28-122$ meV

- Majorana nature!?
- Nuclear matrix elements?

Neutrinoless ββ-decay

Cosmology

 Most stringent bound driven by Planck and DESI data

[Adame et al., arXiv:2404.03002]

 Σ < 0.07 eV (95% CI)

 Model dependence can weaken bounds

Introducing effective neutrino mass $\rightarrow {\sim} 3\sigma$ tension

[Elbers, Neutrino 2024]

β-decay^{*} kinematics

* or electron capture

³H

³He

- Independent of cosmology
- Independent of neutrino nature

The challenge

Key requirements:

- Strong β-decaying source
 - Tritium: **12.3 years**, **E**₀ = **18.6 keV**
 - Holmium: 4500 years, $E_0 = 2.8 \text{ keV}$
- Excellent energy resolution (1 eV)
- Low background (< 100 mcps)

Experimental approaches

Experimental approaches

KArlsruhe TRItium Neutrino Experiment

- International collaboration (150 members)
- Design sensitivity: 0.2 eV (90 % C.L.) (1000 days of measurement time)

Experimental overview

Measurement strategy

- ~30 HV set points with varying duration
- Scan interval: $E_0 40 \text{ eV}$, $E_0 + 135 \text{ eV}$
- 2-3 h scan time
- Several campaigns per year with O(100) scans

Analysis strategy

• Maximum likelihood fit of model

$$\Gamma(qU) \propto A \int_{qU}^{E_0} D(E; m_\beta^2, E_0) \, \mathbf{R}(qU, E) \, \mathrm{d}E + B$$

Τ

- Free parameters: squared neutrino mass m_{β}^2 , effective endpoint E_0 , amplitude A and background B
- Theoretical (Fermi theory, molecular excitations) and experimental inputs (calibration measurements)

Data taking overview

New KATRIN result

Data set:

• 250 days of data (5 campaigns)

Result:

- Best fit: m_v² = -0.14^{+0.13}_{-0.15} eV² (stat. dom.)
- New limit: m_v < 0.45 eV (90% CL)

Neutrino-24 (2024), arXiv:2406.13516 (2024)

Final goal (in 2026):

• < 0.3 eV sensitivity

Experimental improvements

- Background reduction by a factor of 2 with "shifted analyzing plane" configuration
- Mapping of smaller volume on detector
- Inhomogeneous EM-fields
 - Segmentation in **14** patches
 - Calibration of fields needed

Systematic uncertainties

- Statistical uncertainties dominate
- Significant reduction of background-related systematics
- Source-related uncertainties reduced in current data

KATRIN results

- New KATRIN release improves direct neutrino-mass bound by a factor of 2: m_v < 0.45 eV (90% CL)
- Final result:
 - based on 1000 days of data taking (completed end of 2025)
 - sensitivity better than $m_v < 0.3 \text{ eV}$

Going beyond KATRIN

 KATRIN final: < 0.3 eV (90% CL) Distinguish between degenerate and hierarchical scenario

Going beyond KATRIN

- KATRIN final: < 0.3 eV (90% CL) Distinguish between degenerate and hierarchical scenario
- New technologies: < 0.05 eV Cover inverted ordering

Going beyond KATRIN

- Differential measurement (FWHM < 1 eV)
 - Better use of statistics
 - Lower background
 - Atomic tritium
 - Avoid broadening (~ 1eV)
 - Avoid limiting systematics of T_2

Experimental approaches

R&D launched:

- Atomic tritium source concepts
- Application of microcalorimeters (MMC) to β-electrons

Leverage unique infrastructures:

- Tritium Laboratory Karlsruhe
- KATRIN beamline

KATRIN++ (Tritium)

Experimental approaches

Cyclotron Radiation Emission Spectroscopy (CRES)

• Precise frequency measurement:

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{E + m_e}$$

Advantages:

- (sub)-eV-scale differential measurement
- no electron beamline

Challenges:

- Weak signal: ~1fW
- B-field homogeneity at the 10⁻⁷ level
- Large volume (~m³) atomic trap for < 0.04 eV sensitivity

Project 8

- Achievements:
 - Proof of CRES concept

D.M. Asner et al., Phys. Rev. Lett. 114, 162501 (2015)

 \circ First neutrino mass limit: m_v < 155 eV (90% CL)

A. Ashtari Esfahani et al., Phys. Rev. Lett. 131, 102502 (2023)

- Next steps /challenges:
 - large-volume (m³) cavity resonator
 - development of atomic tritium source
- Ultimate goal to cover inverted ordering: 40 meV sensitivity arXiv:2203.07349 (2022)

Project 8

• Achievements:

• Proof of CRES concept

D.M. Asner et al., Phys. Rev. Lett. 114, 162501 (2015)

• First neutrino mass limit: $m_v < 155 \text{ eV} (90\% \text{ CL})$

A. Ashtari Esfahani et al., Phys. Rev. Lett. 131, 102502 (2023)

• Next steps /challenges:

- large-volume (m³) cavity resonator
- development of atomic tritium source
- Ultimate goal to cover inverted ordering: 40 meV sensitivity arXiv:2203.07349 (2022)

Project 8

- Achievements:
 - Proof of CRES concept

D.M. Asner et al., Phys. Rev. Lett. 114, 162501 (2015)

 \circ First neutrino mass limit: m_v < 155 eV (90% CL)

A. Ashtari Esfahani et al., Phys. Rev. Lett. 131, 102502 (2023)

- Next steps /challenges:
 - large-volume (m³) cavity resonator
 - development of atomic tritium source
- Ultimate goal to cover inverted ordering: 40 meV sensitivity arXiv:2203.07349 (2022)

Experimental approaches

Working principle

Low-temperature micro-calorimetry with holmium

A. De rujula and M. Lusignoli, Phys. Lett. 118B (1982)

 $^{163}_{67}\text{Ho}{\rightarrow}^{163}_{66}\text{Dy}^* + \nu_e$

$$^{163}_{66}$$
Dy $^* \rightarrow ^{163}_{66}$ Dy $+ E_{C}$

Working principle

Advantages:

- eV-scale differential measurement
- Source implanted in detector

Challenges:

- eV-resolution
 - operation at low temperature (mK)
 - small pixels (µm-scale)
- Collecting data (> 10¹³ decay for eV sensitivity)
 - high as possible activity per pixel (10 Bq)
 - many (> 10,000) pixels
 - multiplexed read-out

Experiments

• Metallic magnetic calorimeters (MMC)

L. Gastaldo et al. Eur. Phys. J. Spec. Top. 226 (2017)

Holmes

ECHO

• Transition edge sensors (TES)

J Low Temp Phys 184, 492-497 (2016)

HOLMES

ECHo

Achievements

- **Prototype:** m_v < 150 eV (95% CL)
- ECHo-1k: m_v < 19 eV (90% CL) ~1 Bq/pixel, 60 pixels, 10 eV FWHM Neutrino (2024)
- ECHo-100k: excellent performance demonstrated: ~10 Bq/pixel, 12000 pixels, 1 eV sensitivity Neutrino (2024)

Next steps/challenges:

• Scaling up to more activity and pixels

Ultimate goal:

• 10 MBq (100,000 pixels) \rightarrow low sub-ev sensitivity

Holmes

Achievements:

- **First result:** m_v < 28 eV (90% CL)
- 52 active pixels (64 total)
- <A> ≈ 0.3 Bq, ΔE_{FWHM} = ~4 eV @ 6 keV
 Neutrino (2024)

Next steps/challenges:

• Scaling to more activity and pixels

Goal:

● 0.3 MBq (1000 pixels) → 1 eV sensitivity Nuclear Inst. and Methods in Physics Research, A 1051 (2023) 168205

64 pixel detector: ~0.5 Bq activity/pixel

Experimental approaches

- Science goal: Search for Big Bang neutrinos arXiv:1307.4738 [astro-ph.IM]
- Sensitivity to neutrino mass of m_v < 10 meV JCAP 07 (2019) 047
- Combined beyond-thestate-of-the-art technologies PPNP 106, 2019, 120-131

Summary

KATRIN

- Leading neutrino mass limit ($m_v < 0.45 \text{ eV}$) from direct measurements
- Final goal: sensitivity m_v < 0.3 eV

Cyclotron Radiation Emission Spectroscopy (CRES): Project-8 & QTNM

- First neutrino mass limit $m_v < 150 \text{ eV}$ (Project-8)
- Next step: scaling up to large-volume traps, develop atomic tritium source

Microcalorimeter (MMC, TES): ECHo, Holmes & KATRIN++

- New limits $m_v < 19 \text{ eV}$ (ECHo) and $m_v < 28 \text{ eV}$ (Holmes)
- Next step: scaling up to high-activity and large number of detectors

Thank you

and thanks to the KATRIN collaboration ECHo collaboration Project-8 collaboration Holmes collaboration QTNM collaboration

Collaboration meeting, October 2024, Karlsruhe

Backup

KATRIN++

QTNM

Conceptual design of CRESDA

https://www.hep.ucl.ac.uk/qtnm/

Ptolemy

PoS(EPS-HEP2023)103