Overview of the sterile neutrino searches and status of SBN/ICARUS experiment

Animesh Chatterjee, CERN/PRL, for the ICARUS Collaboration 43rd International Symposium on Physics in Collision PIC2024 22-25 October, 2024, Athens, Greece

Status of Neutrino Physics

Super-Kamiokande, Borexino, SNO

atmospheric

accelerator

MBL: Daya Bay, RENO, Double Chooz LBL: KamLAND

IceCube, Super-Kamiokande

T2K, MINOS, NOvA

mixing angles: $sin^2\theta_{12} @ 4\%$ $sin^2\theta_{13} @ 3\%$ $sin^2\theta_{23} @ 3\%$

mass squared differences: $\Delta m_{21}^2 @ 3\%$ $|\Delta m_{31}^2| @ 1\%$

PIC2024, 22-25 October 2024, A.Chatterjee

Status of Neutrino Physics

Neutrino mixing matrix :

Several decades of a rich program of experimental neutrino measurements have provided the resolution to decades-long experimental anomalies associated with solar and atmospheric neutrino measurement

Why BSM ?

WHITE PAPER ON NEW OPPORTUNITIES AT THE NEXT-GENERATION NEUTRINO EXPERIMENTS

(Part 1: BSM NEUTRINO PHYSICS AND DARK MATTER)

C.A. ARGÜELLES¹, A.J. AURISANO², B. BATELL³, J. BERGER³, M. BISHAI⁴, T. BOSCHI⁵, N. BYRNES⁶, A. CHATTERJEE⁶, A. CHODOS⁶, T. COAN⁷, Y. CUI⁸, A. DE GOUVÊA^{* 9}, P.B. DENTON⁴,
A. DE ROECK^{* 10}, W. FLANAGAN¹¹, D.V. FORERO¹², R.P. GANDRAJULA¹³, A. HATZIKOUTELIS¹⁴,
M. HOSTERT¹⁵, B. JONES⁶, B.J. KAYSER¹⁶, K.J. KELLY¹⁶, D. KIM¹⁷, J. KOPP^{10,18}, A. KUBIK¹⁹, K. LANG²⁰, I. LEPETIC²¹, P.A.N. MACHADO¹⁶, C.A. MOURA²², F. OLNESS⁶, J.C. PARK²³,
S. PASCOLI¹⁵, S. PRAKASH¹², L. ROGERS⁶, I. SAFA²⁴, A. SCHNEIDER²⁴, K. SCHOLBERG²⁵, S. SHIN^{26,27}, I.M. SHOEMAKER²⁸, G. SINEV²⁵, B. SMITHERS⁶, A. SOUSA^{* 2}, Y. SUI²⁹, V. TAKHISTOV³⁰, J. THOMAS³¹, J. TODD², Y.-D. TSAI^{16,32}, Y.-T. TSAI³³, J. YU^{* 6}, AND C. ZHANG⁴

* Experimental evidence :

- ☑ Dark matter
- Meutrino masses

Short-baseline anomalies

- ☑ Matter-antimatter asymmetry
- Gravitational interaction

e.t.c.

- * Theoretical motivation:
 - **I Hierarchy problem**
 - **Flavor puzzle**
 - Nature of neutrinos (Dirac or Majorana)
 - **Strong CP Problem**
 - ☑ Dark sector e.tc.

PIC2024, 22-25 October 2024, A.Chatterjee

[1907.08311]

Short Baseline Anomaly

Anomaly #1 : LSND

 $\underline{\nabla}_{e}$ appearance in a $\overline{\nu}_{\mu}$ beam(~3 σ)

- Source—detector distance ("baseline") ~ 30 m
- $\underline{\sigma} \ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ oscillations

Anomaly #1 : LSND

Anomaly #2: MiniBooNE

Phys. Rev. D 103, 052002 (2021)

Anomaly #2: MiniBooNE

Phys. Rev. D 103, 052002 (2021)

Anomaly #3 : the Gallium Anomaly

- The SAGE and GALLEX experiments designed to confirm neutrino oscillation from SUN
- Neutrino detection via

 $^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$

- The ratio of observed over expected ~ 0.86 ± 0.05 (~ 3σ deficit)
- $\checkmark \nu_e$ disappearance into sterile state?
- Recently confirmed by BEST
 experiment (~4σ) <u>BEST</u>
 <u>arXiv:2109.11482</u>, <u>Barinov Gorbunov</u>
 <u>arXiv:2109.14654</u>
- They found the ratio to be ~0.8, consistent with the SAGE and GALLEX

Anomaly #4 : the Neutrino 4 experiment

- 100 MW thermal power
 SM-3 reactor
- Anti-neutrino detector (liquid scintillator) located at a distance of 5m from the reactor
- Measurement performed with the reactor ON/OFF condition, which provides antineutrino spectrum.

All data 2016 -2019 + background 20119

* No contradiction with Gallium Anomaly, the combined result of the Neutrino-4 and gallium anomaly gives

 $\sin^2 2\theta_{14} \approx 0.35 \pm 0.07 (5.0\sigma)$

Anomaly #5 : Reactor Neutrino Fluxes

 \vec{v}_e flux from nuclear reactors ~ 3.5% (~ 3 σ) below prediction \vec{v}_e Oscillation of \vec{v}_e into sterile neutrino \vec{v}_s ? (L/E too small for standard oscillations)

Anomaly #5 : Reactor Neutrino Fluxes

Kopeikin Skorokhvatov Titov arXiv:2103.01684, Berryman Huber arXiv:2005.01756, Giunti Li Ternes Xin arXiv:2110.06820

✓ With updated input data to flux calculation (new β spectra from ²³⁵U fission)

reactor flux anomaly, resolved with new input data to flux calculation

Short Baseline Anomaly

reactor flux anomaly resolved with new input data to flux calculation

reactor spectra is there really an anomaly?

gallium anomaly unresolved, recently reinforced

LSND unresolved

MiniBooNE unresolved

Is there a common explanation for all the anomalies ?

- Flavor conversion (Inclusion of a new light sterile neutrino)
- ☑ Inclusion of dark sectors: Dark matter particles, dark neutrinos, Long lived Heavy Neutrinos etc.
- Conventional explanation : Single photon production, reactor flux modeling etc.

And many more theoretical models ...

Anomalies hint towards a eV-Scale Sterile neutrino

Require additional neutrinos with masses at eV scale

- ✓ v_S : Sterile States (no weak interactions)
- ✓ singlets of SU(2) × U(1) gauge group
- Can affect oscillations through mixing
- The right-handed neutrinos are, by definition, sterile.
- To generate neutrino masses, we need to couple the (active) lefthanded neutrinos to right-handed neutrinos.
- Hence, sterile neutrino has a great motivation both from theory and experiments

3+1 Sterile-Active Neutrino Oscillations

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$
SBL

Small perturbation of 3v mixing

 $|U_{e4}|^2 \ll 1, |U_{\mu4}|^2 \ll 1, |U_{\tau4}|^2 \ll 1, |U_{s4}|^2 \approx 1$

3+1 Short Baseline Oscillation

Appearance $(\alpha \neq \beta)$ Disappearance $P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\beta}}}^{\text{SBL}} \simeq \sin^{2} 2\vartheta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right) \qquad P_{\substack{(-) \ \nu_{\alpha} \to \nu_{\alpha}}}^{\text{SBL}} \simeq 1 - \sin^{2} 2\vartheta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2}L}{4E}\right)$ $\sin^{2} 2\vartheta_{\alpha\beta} = 4|U_{\alpha4}|^{2}|U_{\beta4}|^{2} \qquad \sin^{2} 2\vartheta_{\alpha\alpha} = 4|U_{\alpha4}|^{2}\left(1 - |U_{\alpha4}|^{2}\right)$ Amplitude of v_e disappearance: $U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$ $\sin^2 2\vartheta_{ee} = 4|U_{e4}|^2 (1 - |U_{e4}|^2) \simeq 4|U_{e4}|^2$ • Amplitude of ν_{μ} disappearance: $\sin^2 2\vartheta_{\mu\mu} = 4|U_{\mu4}|^2 (1-|U_{\mu4}|^2) \simeq 4|U_{\mu4}|^2$ • Amplitude of $\nu_{\mu} \rightarrow \nu_{e}$ transitions: 6 mixing angles $\sin^2 2\vartheta_{e\mu} = 4|U_{e4}|^2|U_{\mu4}|^2 \simeq \frac{1}{4}\sin^2 2\vartheta_{ee}\sin^2 2\vartheta_{\mu\mu}$ 3 Dirac CP phases quadratically suppressed for small $|U_{e4}|^2$ and $|U_{\mu4}|^2$ 3 Majorana CP phases

Appearance-Disappearance Tension

See reviews by C. Giunti

- Short-Baseline means : L/E ~ 1 (m/MeV or km/GeV)
- It covers a wide range of experiments
- \square Reactor based ν experiments (L/E ~ m/MeV)
- ☑ Atmospheric Neutrinos in IceCube (L/E ~ 1000km/TeV)
- \blacksquare <u>Accelerator produced ν experiments (L/E ~ 1 km/GeV)</u>
- ☑ ... and many more

Reactor based ν experiments : Status and future

PIC2024, 22-25 October 2024, A.Chatterjee

Reactor based ν experiments : Status and future

Complementary constraints from different reactor experiments (SBL + VSBL) allow to probe a large range of Δm^2

- KATRIN + Reactor
 constraints already
 cover most of Gallium
 Anomaly parameters
- ✓ Reactor Anomaly strength (↔ sin2θ_{ee})
 still depends on flux modeling: not fully solved yet

Positive observations (BEST, Neutrino-4, RENO-NEOS) in (strong) tension with other experiments, to be confirmed in the next few years

Atmospheric Neutrinos in ICECUBE

- ✓ IceCube is a cubic- kilometer neutrino detector buried 1.5km-2.5km beneath the surface of the Antarctic glacier at the South Pole
- ✓ IceCube has made powerful sterile neutrino searches in both high (≥ 400 GeV) and low (≤ 60 GeV) energy ranges
 Phys.Rev.Lett. 129 (2022) 15, 15

 ${\bf v}$ This result is one of the world's most sensitive in the v_disappearance channel at eV2-scale mass splittings

The expected sensitivity of the combined high energy v_{μ} disappearance and cascade appearance signatures PIC2024, 22-25 October 2024, A.Chatterjee

Accelerator based ν experiments : LSND & MiniBooNE

- ✓ The MiniBooNE experiment observes a total excess of 638.0 +/ 52.1 (stat) +/132.8 (syst)
- The overall significance of the excess, 4.8σ, is limited by systematic uncertainties, assumed to be Gaussian, as the statistical significance of the excess is 12.2σ.

MicroBooNE

MicroBooNE experiment is designed to understand the MiniBooNE LEE region (same L/E) with LArTPC detector

Examination of MiniBooNE LEE

- Phys.Rev.Lett. 128 (2022) 24, 241801 Electron-like excess (v_e excess) 2.5 Events Observed / Predicted (no eLEE) Mismodeled/ unknown process? * 2.0 Oscillation-driven excess? 1.5 Photon-like excess 1.0 * Mismodeled/unknown process producing 0.5 photons, e.g. NC Δ resonance radiative decay? 0.0 1e1p CCQE $1eNp0\pi$
- \mathbf{V} Observed v_e candidate rates are statistically consistent with the predicted background rates in the LEE region
- The MicroBooNE eLEE result disfavors the MiniBooNE anomaly originating from a pure ve excess
- Mence, it is ideal to have Short-Baseline Neutrino Program: a combination of v_e appearance and v_μ disappearance with Near and Far detector.

MicroBooNE Observed

Total, no eLEE (x = 0.0)

Total, w/ eLEE (x = 1.0)

1eX

[0 MeV,600 MeV]

Non-ve background

Intrinsic ve

 $1e0p0\pi$

[200 MeV,500 MeV] [150 MeV,650 MeV] [150 MeV,650 MeV]

Short Baseline Neutrino Program (SBN)

The SBN Program is composed of three LArTPC detectors with the goal of definitively addressing the hints of eV-scale sterile neutrinos

Imaging Cosmic And Rare Underground Signals (ICARUS) in a nutshell

- ICARUS-T600 was the first large LArTPC detector
- * Two identical modules (T300) each 19.6 x 3.6 x 3.9 m³
- ICARUS-T600 Liquid argon mass: total 760 t; active 476 t
- Drift distance 1.5 m. Electric field 500 V/cm (75 kV) -> drift time ~1ms
- * 3 signal wire planes (2 induction + 1 collection)
- Pitch : 3 mm; 400 ns sampling time, ~54,000 channels

Installation of the ICARUS Detector at the SBN program

PIC2024, 22-25 October 2024, A.Chatterjee

Operation and data taking of the ICARUS Detector at SBN

- Detector filled in April 2020, fully operational from August 2020.
 Commissioning completed in
- Commissioning completed in 2022, physics data taking started

- * Electron lifetime reached >3ms target for quality physics data taking
- Detector operates with a light based trigger system in coincidence with beam spill, trigger efficiency >90% for BNB events for energies >200 MeV

Neutrino events inside the detector

Detector calibration and performance

Detector response is calibrated with cosmic muons and protons from n events, including a new angular dependent recombination model

 Particle identification using calorimetric measurements

arXiv:2407.12969, submitted to JINST

Beam bunch structure from the data using PMTs

* BNB and NuMI bunch structure reconstructed using PMT system.

```
Individual bunch structure of the BNB
```


Physics @ICARUS : Neutrino Oscillation measurements

- * The SBN program is searching sterile neutrinos with the BNB beam by looking at the ν_{μ} disappearance and ν_{e} appearance using the ICARUS (Far-detector) and SBND (Near-detector) LAr-TPCs.
- * ICARUS detector is also exposed to ν_{μ}/ν_{e} events from NuMI beam.
- * Before the start of joint operation and in preparation for the SBN oscillation analyses, ICARUS is focusing on ν_{μ} disappearance channel:
 - Focus is on $1\mu Np0\pi$ final states from events in coincidence with the BNB for the ICARUS single-detector oscillation measurement with two reconstruction approaches
 - Pandora pattern recognition based software used in previous LArTPC experiments
 - SPINE machine learning based reconstruction chain

Physics @ICARUS : Event Selections for Neutrino Oscillation Physics

- * Advanced event selections are in place looking at $1\mu Np0\pi$ final states
- * Good data/MC agreement seen in 10% subset of the Run 2 (2023) data

Pandora Selection

Physics @ICARUS : ν_e appearance event selections

- * EM Shower reconstruction is the key for electron neutrino event selection
- * Studies using the SPINE reconstruction show promising ability to reconstruct π^0 events which are used to calibrate the shower reconstruction
- Good data/MC agreement!
- Ready for the next analysis steps: enlarge the control sample size to confirm the analysis robustness and then proceed to full dataset unblinding and oscillation fit.

Physics @ICARUS : Neutrino-Argon Cross-section measurements

- * ICARUS is located at 6 degrees off-axis to the 120 GeV NuMI neutrino beam.
- * Provides high statistics for neutrino-argon cross section measurements: expect ~330k muon neutrinos and ~17k electron neutrinos in 6 x 10^{20} POT

* First cross-section measurement also focuses on $1\mu Np0\pi$ final state.

* Good data/MC agreement with 15% subset of Run1+Run2 (2022+2023) data

Physics @ICARUS :Beyond the Standard Model (BSM) searches

- ICARUS can probe Beyond the Standard Model signatures with the significant sensitivity originating from the NuMI off-axis beam.
- First BSM analysis involve kaon decay and looking at the dimuon final state signature
 - Higgs portal Scalar (HPS) : Scalar dark sector particles interactions by mixing with the Higgs boson
 - Heavy QCD axion (ALP) : Pseudoscalar particles interactions by mixing with pseudo-scalar mesons
- Other search possibilities include i.e. light dark matter and heavy neutral leptons
 M + 211 Mov. A typical event in the signal box

HPS production and detection @ICARUS

Physics @ICARUS :Beyond the Standard Model (BSM) searches

- * The idea to probe HPS/ALP is to look for a resonance ("bump" above the background) at a specific value of the di-muon invariant mass.
- * Analysis performed using the ICARUS Run1+Run2 NuMI data, there is no new physics signal observed and the observed events are consistent with the expected background.

Paper in preparation!

Sterile sensitivity: SBN

Outlook

- The simplest theoretical interpretation of the outstanding shortbaseline anomalies in neutrino physics, namely, the light sterile neutrino within the context of a 3+1 model
- Despite significant progress in the form of new experimental measurements and theoretical development, the short-baseline experimental neutrino anomalies remain unresolved
- Different experimental efforts (accelerator-based short/longbaseline, reactor-based short-baseline, atmospheric neutrinos, and radioactive source) will provide solution of the anomalies

Outlook

- * The ICARUS experiment is currently operating at Fermilab as part of the SBN program and is currently taking physics data after completing its commissioning period in June 2022
- ICARUS can take advantage of both the BNB beam on-axis and the NuMI beam off-axis
- The ICARUS data can be used for neutrino oscillation searches, cross section measurements, and BSM physics
- Event selections for neutrino oscillations and neutrino-argon cross sections are in advance state with good data/MC agreement
- ICARUS has completed its first physics search looking for Higgs Portal Scalar and Axion-Like Particle BSM signatures
- Stay tuned for more exciting physics results from ICARUS!
 PIC2024, 22-25 October 2024, A.Chatterjee

Thank you

Sterile Neutrinos in Cosmology

I eV-mass light sterile neutrino motivated by the short baseline anomalies is in strong tension with cosmological measurements primarily because of the nondetection of a non-standard Neff ~ 4

Given the large number of unknowns in cosmology, e.g., the nature of dark energy, inflation, etc., and with different extended models can explain the short-baseline neutrino anomalies with light sterile neutrino hypothesis