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Overview

● mW provides a stringent test of the internal consistency of the Standard Model (SM). The global 
Electroweak(EW) Fit allows for a precise prediction of mW given mH, mt, etc.

○ mW predicted by EW fit with ∆𝑚𝑊 = 6 MeV (10-4) uncertainty, ∆𝑚𝑊 on PDG average in 2022 = 13 MeV
○ Last CDF II measurement in strong tension with SM prediction and previous measurements
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W boson production and decay
● Production of W boson from quarks 

inside the colliding protons
● Hadronic decay channel not feasible 

due to huge QCD backgrounds/jet 
energy scale

● Focus on leptonic decay
○ Neutrino goes undetected in the detector, 

but can be inferred from the missing 
transverse momentum or pTMiss
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Measuring mW at hadron colliders
● Traditionally, mT is the preferred variable for the 

mW measurement
○ More robust wrt theoretical calculations, but resolution 

limited at high pileup environments

● At LHC, due to higher pileup, pT
l is more precise 

than mT
○ Sensitive to theoretical uncertainties (PDFs and W pT)
○ Can be measured very precisely experimentally
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The CMS analysis
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The CMS analysis
● Standard single-muon selection
● Simultaneous maximum likelihood fit to muon pT- 𝜂 distribution for W+ and W-

○ pTW: use theoretical model with large systematic uncertainties which are constrained in-situ:
■ Z kept as independent cross-check

○ PDFs: Constrain PDF uncertainties exploiting 𝜂 (demonstrated in W helicity measurement Phys. Rev. D 102 (2020) 
092012)
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• 2880 bins
• O(5K) systematic variations
• 4.5B fully simulated events, > 

100M selected W candidates

No electron or mT for 
now, more challenging 
systematics, need 
additional works.

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092012
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092012


pTW modelling
● Simulation of events using MiNNLOPS + 

Pythia8 + Photos (NNLO + LL in 𝛼𝑠)
● Reweighting to match predictions from 

SCETLib + DYTurbo (N3LL + NNLO)
● Uncertainties

○ Non-perturbative: Intrinsic momentum of partons
(TMP PDF), non-perturbative uncertainties in 
resummation

○ Resummation (perturbative): “Theory Nuisance 
Parameters” corresponding to coefficients in 
resummed calculations

○ Matching: Variation in matching scale
○ Fixed order: Missing higher orders in 𝛼𝑠 assessed 

through 𝜇𝑟, 𝜇𝑓 variations
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PDFs
● Several modern sets are considered.
● Check compatibility between PDF 

sets:
○ Bias test with prediction from one PDF set 

as nominal and prediction from the other 
as pseudo-data, repeated changing the 
nominal PDF set

○ Inflate PDF uncertainties for “failing” sets

● CT18Z chosen as nominal set:
○ Among the largest unscaled impacts from 

PDFs
○ But doesn’t need inflation to cover other 

sets
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PDF set Scale factor Impact in mW (MeV)
Original sPDF Scaled sPDF

CT18Z – 4.4
CT18 – 4.6
PDF4LHC21 – 4.1
MSHT20 1.5 4.3 5.1
MSHT20aN3LO 1.5 4.2 4.9
NNPDF3.1 3.0 3.2 5.3
NNPDF4.0 5.0 2.4 6.0



Muons in CMS
● Two-stage reconstruction

○ Tracker track matched with muon track
○ Additional identification criteria

● Efficiencies and scale factors are 
measured in Z → 𝜇𝜇 events

○ With unprecedented level of granularity
○ Careful factorization of each 

reconstruction/identification step
○ Effect of hadronic recoil from W/Z boson 

is also taken into account for isolation 
and trigger efficiencies

● Uncertainties propagated through 
O(3000) nuisance parameters

○ Impact on mW → ~3 MeV

9

0.96

0.97

0.98

0.99

1

M
C

 e
ffi

ci
en

cy
 s

ca
le

 fa
ct

or
 /  

D
at

a

 < 1.8µηReconstruction: 1.7 < 

Nominal  / ndf = 3.0 / 62χModel + unc.   

Alternate  / ndf = 6.9 / 62χAlt. model   

Preliminary CMS  (13 TeV)-116.8 fb

25 30 35 40 45 50 55 60 65

 (GeV)
T
pPositive muon 

0.99
1

1.01
1.02

R
at

io
 to

 fi
t

0.994

0.996

0.998

1

1.002

M
C

 e
ffi

ci
en

cy
 s

ca
le

 fa
ct

or
 /  

D
at

a

 < 0.4µηID + impact parameter: 0.3 < 

Nominal  / ndf = 11.6 / 112χModel + unc.   

Alternate  / ndf = 11.3 / 112χAlt. model   

Preliminary CMS  (13 TeV)-116.8 fb

25 30 35 40 45 50 55 60 65

 (GeV)
T
pPositive muon 

0.998
1

1.002

R
at

io
 to

 fi
t



Hadronic Recoil
● Transverse mass is not directly used as a fit variable in the present analysis, but it’s 

used as a part of the event selection and non-prompt background estimation
● Hadronic recoil is constructed with “DeepMET” algorithm: DNN-based recoil 

reconstruction operating with inputs at the individual particle flow candidate level.
● Recoil response is calibrated using Z→ 𝜇𝜇 events.
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Muon Momentum Calibration
● Target is %&!

"

&!"
~ 10-4 for ~40 GeV muons (~ 8 MeV on mW)

● With default muon reconstruction and calibration of CMS this can not be achieved
● Calibration performed in sequential steps

○ Tuning of parameters in CMS simulation
○ Track re-fit with improved B-field/material treatment based on Geant4e (Continuous Variable Helix or CVH refit)
○ Global correction of alignment/B-field/material at the per-module level using J/𝜓 events
○ Residual scale bias measured on J/𝜓 events in a fine-grained 4D space (pT+, 𝜂+, pT-, 𝜂-) by fitting a parametric 

model
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Muon Momentum Calibration: Validation with Y and Z

● Parametric corrections from J/𝜓 applied to Υ,Z → 𝜇𝜇 events
○ Repeat last step to derive the residual scales for B-field and alignment

● Check the compatibility by a 𝜒2 test
○ Inflation of J/𝜓 stat. uncertainty by a factor 2.1
○ Stat. uncertainty from Z added to uncertainty model, together with PDG uncertainty
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B-field Alignment



Z → 𝝁𝝁 mass fit
● Validation of the scale calibration by fitting the (m𝜇𝜇, 

𝜂𝜇fwd) distribution
● mz

CMS – mZ
PDG = -2.2 ± 1.0 (stat) ± 4.7 (syst) MeV

= -2.2 ± 4.8 MeV
● Though only J/𝜓 events are used as input for the 

muon momentum calibration
○ Z events are used to check the consistency of 

the derived result
○ J/𝜓 vs Z closure also used in the uncertainty 

model
● Hence, can not be considered as an 

independent Z mass measurement
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Validation : W - like
● Select Z → 𝜇𝜇 events and treat one muon at the time as a neutrino

14

𝜇+ in even 
numbered 
events

𝜇- in odd 
numbered 
events



W – like results
● Total uncertainty on mZ is 14 MeV

○ Muon scale (5.6), angular coeff (4.9). 
Muon reco (3.8)

○ mZ kept blind until all checks completed
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Moving to the W mass measurement
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Non-prompt background
● Mostly muons from B/C hadrons decay (~85%)
● Data-driven estimation using an extended ABCD 

method based on iso : mT
○ Validated with QCD simulation and data from control region 

with muons from secondary vertices (SV sideband region)
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Unblinding the W fit
● MW = 80360.2 ± 9.9 MeV
● In agreement with the SM
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Helicity cross-section fit
● Implementation of less model dependent measurement

○ Additional test of the QCD model, BSM physics in W production or decay, etc.

● Basic strategy: Measure the terms of the 9 helicity cross sections 𝜎𝑖 ≡
𝜎𝑈𝐿×𝐴𝑖 double differentially in W rapidity and pT(relying less on theoretical 
predictions and uncertainties from PDFs and QCD) together with mW
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• Trade systematic uncertainties for larger statistical uncertainties



Helicity cross-section fit
● Current data/observables are not 

sufficient to constrain all the relevant 
helicity components

● Cross sections are regularized via 
constraints to the nominal prediction

○ Uncertainties are increased with respect to the 
nominal prediction

● Results for different constraints to the 
nominal predictions are shown.

● Agreement with the main result.
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Conclusions
● First measurement of mW by 

CMS
● Most precise measurement at 

the LHC
○ Approaching the precision of 

CDF
● Good agreement with the SM 

prediction and other 
measurements, except CDF

● Measurement is performed 
with ~10% of Run 2 data

○ Large room for improvement
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Backup
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pTW modelling
● Conventional wisdom: estimate pTW using measured pTZ sprectrum and rely 

on theoretical ration of W/Z cross sections. Uncertainties expressed in terms 
of QCD scales decorrelated in bins of pTW and angular coefficients

○ QCD scales don’t capture non-perturbative effects
○ Not physical parameters -> no statistical meaning if constrained
○ Large dependence of the uncertainty on the degree of correlation that is assumed between W 

and Z

23PLB 845 (2023) 138125Peak at low pT

https://www.sciencedirect.com/science/article/pii/S0370269323004598?via%3Dihub


Model validation
● Comparison of pT

ll unfolded at generator 
level with predictions from theoretical 
modelling

○ For both direct fit to pT𝜇𝜇 and W-like fit to single 
muon (𝜂 , pT, q)

● Agreement between unfolded data and 
postfit distributions from TNPs

● Direct fit to pT
𝜇𝜇 has stronger constraints 

but W-like fit is able to correctly dientagle
mZ from from the Z pT spectrum 

● mW can be measured without tuning the 
pT spectrum to the Z
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