

European Research Council

Established by the European Commission

Istituto Nazionale di Fisica Nucleare

Measurement of the W boson mass at CMS

Rajarshi Bhattacharya, INFN Pisa, On behalf of CMS collaboration

CMS-SMP-23-002

Overview

ATLAS W mass measuremnt, arXiv:2403.15085

- m_W provides a stringent test of the internal consistency of the Standard Model (SM). The global Electroweak(EW) Fit allows for a precise prediction of m_W given m_H, m_t, etc.
 - m_W predicted by EW fit with $\Delta m_W = 6$ MeV (10⁻⁴) uncertainty, ΔmW on PDG average in 2022 = 13 MeV
 - Last CDF II measurement in strong tension with SM prediction and previous measurements

W boson production and decay

- Production of W boson from quarks inside the colliding protons
- Hadronic decay channel not feasible due to huge QCD backgrounds/jet energy scale
- Focus on leptonic decay
 - Neutrino goes undetected in the detector, but can be inferred from the missing transverse momentum or p_T^{Miss}

Measuring m_w at hadron colliders

Events per GeV⁻¹

Data/fit

- Traditionally, m_{T} is the preferred variable for the m_w measurement
 - More robust wrt theoretical calculations, but resolution \bigcirc limited at high pileup environments
- At LHC, due to higher pileup, p_T^{I} is more precise than m_{T}
 - Sensitive to theoretical uncertainties (PDFs and W p_T) Ο
 - Can be measured very precisely experimentally Ο

Pre-fit ratio

p^ℓ_T [GeV]

/// Stat @ Sys

 $W^+ \rightarrow \tau^+ v_{\tau}$

Backgrounds

45

×10³

 p_{T}^{miss}

 $m_{T}^{2} = 2 p_{T}^{2} p_{T} (1 - c_{\infty} \phi_{p_{\gamma}})$

 $\gamma^{2}/dof = 50 / 48$

P_{...2} = 37 %

P_{KS} = 98 %

90

100

ATLAS

35

104 marine and a second and a second and a second and a second

40

Events / GeV

Data / Pred

400 ATLAS

300

200

100

30

 $\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$

e+-channel, post-fit

The CMS analysis

The CMS analysis

- Standard single-muon selection
- Simultaneous maximum likelihood fit to muon $p_T \eta$ distribution for W⁺ and W⁻
 - \circ p_T^W: use theoretical model with large systematic uncertainties which are constrained in-situ:
 - Z kept as independent cross-check
 - PDFs: Constrain PDF uncertainties exploiting η (demonstrated in W helicity measurement Phys. Rev. D 102 (2020) 092012)

- 2880 bins
- O(5K) systematic variations
- 4.5B fully simulated events, > 100M selected W candidates

No electron or m_T for now, more challenging systematics, need additional works.

p_T^w modelling

- Simulation of events using MiNNLO_{PS} + Pythia8 + Photos (NNLO + LL in α_s)
- Reweighting to match predictions from SCETLib + DYTurbo (N3LL + NNLO)
- Uncertainties
 - Non-perturbative: Intrinsic momentum of partons (TMP PDF), non-perturbative uncertainties in resummation
 - Resummation (perturbative): "Theory Nuisance Parameters" corresponding to coefficients in resummed calculations
 - Matching: Variation in matching scale
 - Fixed order: Missing higher orders in α_s assessed through μ_r , μ_f variations

PDFs

- Several modern sets are considered.
- Check compatibility between PDF sets:
 - Bias test with prediction from one PDF set as nominal and prediction from the other as pseudo-data, repeated changing the nominal PDF set
 - Inflate PDF uncertainties for "failing" sets
- CT18Z chosen as nominal set:
 - Among the largest unscaled impacts from PDFs
 - But doesn't need inflation to cover other sets

3.2

2.4

3.0

5.0

NNPDF3.1

NNPDF4.0

5.3

6.0

Muons in CMS

- Two-stage reconstruction
 - Tracker track matched with muon track
 - Additional identification criteria
- Efficiencies and scale factors are measured in $Z \rightarrow \mu\mu$ events
 - With unprecedented level of granularity
 - Careful factorization of each reconstruction/identification step
 - Effect of hadronic recoil from W/Z boson is also taken into account for isolation and trigger efficiencies
- Uncertainties propagated through O(3000) nuisance parameters
 - \circ ~ Impact on $m_W \rightarrow {\rm \sim}3~MeV$

Hadronic Recoil

- Transverse mass is not directly used as a fit variable in the present analysis, but it's used as a part of the event selection and non-prompt background estimation
- Hadronic recoil is constructed with "DeepMET" algorithm: DNN-based recoil reconstruction operating with inputs at the individual particle flow candidate level.
- Recoil response is calibrated using $Z \rightarrow \mu \mu$ events.

Muon Momentum Calibration

- Target is $\frac{\delta p_T^{\mu}}{p_T^{\mu}} \sim 10^{-4}$ for ~40 GeV muons (~ 8 MeV on m_W)
- With default muon reconstruction and calibration of CMS this can not be achieved
- Calibration performed in sequential steps
 - Tuning of parameters in CMS simulation
 - Track re-fit with improved B-field/material treatment based on Geant4e (Continuous Variable Helix or CVH refit)
 - Global correction of alignment/B-field/material at the per-module level using J/ ψ events
 - Residual scale bias measured on J/ ψ events in a fine-grained 4D space (p_T^+ , η^+ , p_T^- , η^-) by fitting a parametric model (δp_T) ϵ_n

Muon Momentum Calibration: Validation with Y and Z

- Parametric corrections from J/ψ applied to $\Upsilon, Z \rightarrow \mu\mu$ events
 - Repeat last step to derive the residual scales for B-field and alignment
- Check the compatibility by a χ^2 test
 - Inflation of J/ ψ stat. uncertainty by a factor 2.1
 - Stat. uncertainty from Z added to uncertainty model, together with PDG uncertainty

$Z \rightarrow \mu\mu$ mass fit

- Validation of the scale calibration by fitting the (m^{$\mu\mu$}, η^{μ}_{fwd}) distribution
- $m_z^{CMS} m_z^{PDG} = -2.2 \pm 1.0 \text{ (stat)} \pm 4.7 \text{ (syst) MeV}$ = -2.2 ± 4.8 MeV
- Though only J/ψ events are used as input for the muon momentum calibration
 - Z events are used to check the consistency of the derived result
 - J/ ψ vs Z closure also used in the uncertainty model
- Hence, can not be considered as an independent Z mass measurement

Validation : W - like

• Select $Z \rightarrow \mu\mu$ events and treat one muon at the time as a neutrino

W – like results

- Total uncertainty on m_z is 14 MeV
 - Muon scale (5.6), angular coeff (4.9).
 Muon reco (3.8)
 - m_z kept blind until all checks completed

Moving to the W mass measurement

Non-prompt background

- Mostly muons from B/C hadrons decay (~85%)
- Data-driven estimation using an extended ABCD method based on iso : m_T
 - Validated with QCD simulation and data from control region with muons from secondary vertices (SV sideband region)

In each $(\eta, p_T bin:)$

Impact on $m_W \rightarrow \textbf{\sim}~3 MeV$

Unblinding the W fit

- M_W = 80360.2 ± 9.9 MeV
- In agreement with the SM

Source of uncertainty	Impact (MeV)	
	Nominal	Global
Muon momentum scale	4.8	4.4
Muon reco. efficiency	3.0	2.3
W and Z angular coeffs.	3.3	3.0
Higher-order EW	2.0	1.9
$p_{\rm T}^{\rm V}$ modeling	2.0	0.8
PDF	4.4	2.8
Nonprompt background	3.2	1.7
Integrated luminosity	0.1	0.1
MC sample size	1.5	3.8
Data sample size	2.4	6.0
Total uncertainty	9.9	9.9

Helicity cross-section fit

- Implementation of less model dependent measurement
 - Additional test of the QCD model, BSM physics in W production or decay, etc.
- Basic strategy: Measure the terms of the 9 helicity cross sections $\sigma_i \equiv \sigma_{UL} \times Ai$ double differentially in W rapidity and p_T (relying less on theoretical predictions and uncertainties from PDFs and QCD) together with m_W

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}y\,\mathrm{d}m\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi}\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{2}\,\mathrm{d}y\,\mathrm{d}m} \times \left[(1+\cos^{2}\theta)+A_{0}\frac{1}{2}(1-3\cos^{2}\theta)\right]$$
$$+ A_{1}\sin2\theta\cos\phi + A_{2}\frac{1}{2}\sin^{2}\theta\cos2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta$$
$$+ A_{5}\sin^{2}\theta\sin2\phi + A_{6}\sin2\theta\sin\phi + A_{7}\sin\theta\sin\phi\right].$$

Trade systematic uncertainties for larger statistical uncertainties

Helicity cross-section fit

- Current data/observables are not sufficient to constrain all the relevant helicity components
- Cross sections are regularized via constraints to the nominal prediction
 - Uncertainties are increased with respect to the nominal prediction
- Results for different constraints to the nominal predictions are shown.
- Agreement with the main result.

Conclusions

- First measurement of m_W by CMS
- Most precise measurement at the LHC
 - Approaching the precision of CDF
- Good agreement with the SM prediction and other measurements, except CDF
- Measurement is performed with ~10% of Run 2 data
 - Large room for improvement

p_T^w modelling

- Conventional wisdom: estimate p_T^W using measured p_T^Z sprectrum and rely on theoretical ration of W/Z cross sections. Uncertainties expressed in terms of QCD scales decorrelated in bins of p_T^W and angular coefficients
 - QCD scales don't capture non-perturbative effects
 - Not physical parameters -> no statistical meaning if constrained
 - Large dependence of the uncertainty on the degree of correlation that is assumed between W and Z

Model validation

- Comparison of p_T^{II} unfolded at generator level with predictions from theoretical modelling
 - For both direct fit to $p_T^{\mu\mu}$ and W-like fit to single muon (η , p_T , q)
- Agreement between unfolded data and postfit distributions from TNPs
- Direct fit to $p_T^{\mu\mu}$ has stronger constraints but W-like fit is able to correctly dientagle m_Z from from the Z p_T spectrum
- m_w can be measured without tuning the p_T spectrum to the Z

