23/10/24 43rd International Symposium on Physics in Collision - PIC 2024 Searches for Heavy Resonances Decaying into Bosons at CMS

Antonis Agapitos On behalf of the CMS collaborations

Outline: New results in this talk

	ID & Links	Тороlоду	Released	Model	New CMS results
1	<u>B2G-23-004</u>	$g_{KK} \to gR \to gWW$	June 24	EWED	released last ~8 months
2	<u>B2G-23-006</u>	$A \to ZH \to \ell\ell \text{ tt} \to \ell\ell\text{+jets}$	March 24	2HDM	Eull rup 2 datas 120 fb-1
3	<u>HIG-22-004</u>	$A{\rightarrow}ZH{\rightarrow}~{\boldsymbol{\mathscr{U}}}\tau_h\tau_h$	July 24	2HDM	Full full 2 Gala, 150 ID
4	<u>SUS-23-012</u>	$A {\rightarrow} H \alpha {\rightarrow} \tau \tau \chi \chi$	July 24	2HDM+α	CMS Integrated Luminosity, pp
5	<u>SUS-23-018</u>	(bb) $H \rightarrow ZA \rightarrow \ell \ell \chi \chi$	July 24	2HDM+α	90 2010, 7 TeV, 45.0 pb ⁻¹ 2011, 7 TeV, 61.1 b ⁻¹ 2012, 8 TeV, 23.3 b ⁻¹ 80
6	<u>B2G-23-008</u>	$Z' \to ZH \to \ell \ell / v v \text{ cc} / 4q$	March 24	HVT	2015, 13 TeV, 4.2 h ⁻¹ 2016, 13 TeV, 4.0.8 h ⁻¹ 2016, 13 TeV, 40.8 h ⁻¹ 60 60 2017, 13 TeV, 54.4 h ⁻¹ 60
7	<u>B2G-23-002</u>	X→YH / HH	March 24	many	
8	<u>EXO-22-024</u>	Х→үү	March 24	WED,ADD	
		Summary plots			
Re	levant new results	not covered; some in backups	s, others in <mark>El</mark> i	isabetta's <u>talk</u>	1 Apr^{0} 1 Ne^{0} $1 \text{ J}^{0^{11}}$ $1 \text{ J}^{0^{11}}$ $1 \text{ A}^{0^{12}}$ 1 Se^{0} $1 \text{ O}^{c^{12}}$ $1 \text{ N}^{0^{12}}$ $1 \text{ O}^{c^{12}}$ CMS Average Pileup
9	<u>HIG-22-012</u>	$X \rightarrow YH / HH \rightarrow \tau \tau \gamma \gamma$	March 24	WED,ExtH	$2018 (13 \text{ TeV}): <\mu > = 39$
10	<u>EXO-21-015</u>	$VBF Z' {\rightarrow} WW {\rightarrow} \ell\ell vv$	June 24	Z'	$ = 2016 (13 \text{ TeV}) : <\mu > = 27 \\ = 2015 (13 \text{ TeV}) : <\mu > = 13 \\ = 2015 (13 \text{ TeV}) : <\mu > = 13 \\ = 4000 $
11	<u>EXO-21-01</u> 7	$X{\rightarrow} W\gamma \rightarrow \ell v\gamma$	March 24	W'	$2012 (8 \text{ TeV}): <\mu > = 21$ $2011 (7 \text{ TeV}): <\mu > = 10$ 3000
12	<u>HIG-24-002</u>	$X \rightarrow ZZ \rightarrow 4\ell$	July 24	2HDM,WED	$ \begin{array}{c} \sigma_{\mu\nu}^{\mu\nu}(13\ TeV) = 80.0\ mb \\ \sigma_{\mu\nu}^{\mu\nu}(8\ TeV) = 73.0\ mb \\ \sigma_{\mu\nu}^{\mu\nu}(7\ TeV) = 71.5\ mb \\ \end{array} \right) $
		Full list of CMS BSM ph Preliminary results: <u>Here</u> Publications: Here	nysics result <u>Here</u>	S:	by 1000 0 20 A0 60 50 1000 Mean number of interactions per crossing

23/10/24

EWED landscape & $g_{KK} \rightarrow gR \rightarrow gWW$

Extended Warped Extra Dimension (EWED) model (K.Agashe, et al, <u>1612.00047</u>, <u>1711.09920</u>, <u>1809.07334</u>)

- Extra brane by splitting \rightarrow extended bulk \rightarrow 3 or more branes, 2 or more Radion
- "Di-SM-objects" suppressed, in favor of "tri-SM-objects" \rightarrow A wealth of new signatures
- Various fields propagate in different sub-spaces, 3 main scenarios:

23/10/24

g_{KK}

000000

Jet

Jet

50000

W

R

w

Jet

Search for $g_{KK} \rightarrow gR \rightarrow gWW$

• W→qq identification with ParticleNet tagger <u>1902.08570</u>

- Graph NN, treat jets as particle cloud

- Convolution on point clouds (EdgeConv 1801.07829)
- Tagger: $p(W \rightarrow qq) / [p(W \rightarrow qq) + p(QCD)]$

- 10 SRs are formed
- QCD estimate from CRs: QCD_{SRxy} $Pred_{SRxy}^{QCD} \equiv [Data - Rest]_{CRxy} \frac{2}{QCD_{CRxy}}$
- Fit the m_{iii}^* in 10 SRs \rightarrow

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

(Data-Pred.)/σ_{stat}

1500

1000

500

1500

2000

2500

3000

3500

4000

4500

--Signal/σ_{stat}

m_{iii}* (GeV)

4000

3500

Search for $A \rightarrow ZH \rightarrow \mathcal{U} tt_{had}$

- Two Higgs Doublet Model (<u>2HDM</u>) introduces an additional Higgs doublet to the SM
 → 5 Higgs bosons: h, H, A, H[±]
- Free params: m_A , m_H , $m_{H\pm}$, m_h , $tan(\beta)=v_1/v_2$, α
- Alignment limit " $\cos(\beta \alpha) = 0$ " \rightarrow h is SM-like
- Low $m_{A/H}$, low tan(β) region explored in ℓ bb-channel <u>JHEP(2020)</u>, H \rightarrow bb dominant, sensitive for $m_H < m_{tt}$
- High m_{A/H}, unexplored at LHC so far: This AZH(ℓℓ tt) analysis focuses on m_H>m_{tt} with H→tt dominant
- Further motivation: Baryon asymmetry can arise from EW baryogenesis facilitated by 2HDM configurations requiring a first-order electroweak phase transition (FOEWPT) <u>2208.14466</u> (fig.3, left).
 → This search targets this region.
- The tt→bqq bqq (resolved jets) & Z→ 𝒰 is considered [for 1st time]

23/10/24

$A \rightarrow ZH \rightarrow \ell \ell tt:$ selection & BKG estimate

- Signal: LO (MG5), ggA production, $\Gamma/m_{A,H}=3\%$.
- $N_{\ell} = 2$, $ee/\mu\mu$, OS, $Im_{\ell\ell} m_Z < 5GeV$
 - tt → jets

tt-system (m_{tt}=m_H) reconstructing minimizing a χ^2

- $N_j \ge 5$, AK4, CHS jets \rightarrow binning
- $N_b = 0, 1, \ge 2$ (<u>DeepJet</u> Mid-WP) \rightarrow binning
- Use $\Delta m = m_A m_H$, pT_Z variables[*] \rightarrow form elliptical bins in $p_{TZ} \times \Delta m$ plain, centered at signal mean
- Dominant BKGs: tt, ttZ \rightarrow from SB: $|m_{\ell} m_Z| > 5 \text{ GeV}$ Z+jets \rightarrow from N_b=0 CR
 - 6 bins over N_b, N_j, (4 SRs, 2CRs), 6 bins over $p_{TZ} \times \Delta m \rightarrow 24$ in total

$A \rightarrow ZH \rightarrow \ell \ell$ tt: limits & 2HDM constrains

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

CMS

$2HDM+\alpha$, $A \rightarrow \alpha h$, $bbH \rightarrow \alpha Z$

- <u>2HDM+ α </u>: α : additional pseudoscalar Dark Matter mediator, h: SM-higgs, H: BSM-higgs.
- Search for DM production in "mono-h/Z" signatures: h/Z boson recoiling high p_T^{miss}.

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

9

Search for $Z' \rightarrow ZH \rightarrow \ell \ell / vv cc/4q$

- $Z \rightarrow ee / \mu \mu / vv$
- H→cc (3%) / 4q (12%)
- Complementary to the H→ bb analysis <u>2102.08198</u>

Selection:

- 2 OS-SF ℓ , $p_T^{\ensuremath{\ell}\ensuremath{\ell}\xspace}$ > 200 GeV or
- $p_T^{miss} > 250 \text{ GeV from } Z \rightarrow vv$
- H-tagging: <u>ParticleNet</u> >0.95 HvsQCD = $\frac{p(X \to b\overline{b}) + p(X \to c\overline{c}) + p(X \to q\overline{q})}{p(X \to b\overline{b}) + p(X \to c\overline{c}) + p(X \to q\overline{q}) + p(QCD)}$
- Vetoing b-subjets.
- Signal eff.~50%, BKG-eff.~ 1%

- Heavy Vector Triplet (HVT)
 <u>model</u> → New spin1: Z', W'
- Predicted by weakly coupled extended gauge sectors, little or composite Higgs models.
- Model B considered here $c_{\rm H} = -0.976, c_{\rm F} = 1.024, \text{ and } g_{\rm V} = 3$ V' \rightarrow VV/VH is dominant \rightarrow

• $m_{Z'}>1.4 \text{ TeV} \rightarrow \text{boosted jet}$

23/10/24

$Z' \rightarrow ZH \rightarrow \ell \ell / vv cc/4q$, BKG modeling

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

$Z' \rightarrow ZH \rightarrow \ell\ell/vv$, cc/4q: Limits & Interpr.

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

Review article: $X \rightarrow HH$, HV, HY 2403.16926

Searches for Higgs boson production through decays of heavy resonances

23/10/24

Search for resonant $X \rightarrow \gamma \gamma_{2405.09320}$

23/10/24

Search for non-resonant yy signal 2405.09320

Data

γγ post-fit prediction

jγ,jj post-fit prediction

Pred + ADD GRW (M = 9 TeV)

138 fb⁻¹ (13 TeV)

(Data-Pred.)/o_{STAT}

3500

m_{yy} (GeV)

 $\pm 1 \sigma_{SYS} / \sigma_{STAT}$ Signal / σ_{STAT}

3000

<u>ADD large ED model</u>

- Select $\gamma\gamma$ events.
- EBEB, EBEE categories \rightarrow
- QCD BKG prediction:
 - $\gamma\gamma$: Sherpa scaled at NNLO with <u>MCFM</u>.
 - $j\gamma$, jj = fakes: 10-30%, data0driven with fake rate.

>10° 0

10

10⁻¹

Pull

CMS

1000

1500

2000

2500

EBEB

- Fit the two binned $m_{\gamma\gamma}$ spectra in range 0.5-4 TeV.
- Lower limits on M_S (or Λ_T) scale vs number of ED: (~11 TeV)

Signal:	GRW	Hewett		HLZ				
		negative	positive	$n_{\rm ED}=3$	$n_{\rm ED} = 4$	$n_{\rm ED} = 5$	$n_{\rm ED} = 6$	$n_{\rm ED} = 7$
Expected:	$8.7\substack{+0.7 \\ -0.6}$	$7.3\substack{+0.3 \\ -0.3}$	$7.8\substack{+0.6 \\ -0.5}$	$10.3\substack{+0.8 \\ -0.7}$	$8.7\substack{+0.7 \\ -0.6}$	$7.9\substack{+0.6 \\ -0.5}$	$7.3\substack{+0.6 \\ -0.5}$	$6.9\substack{+0.6 \\ -0.5}$
Observed:	9.3	7.1	8.3	11.1	9.3	8.4	7.8	7.4

Interpretation on Continuum Clockwork Mechanism \rightarrow Constrains on M_5 mass vs clockwork spring "k".

23/10/24

Summary plots & model constrains Twiki

23/10/24

Backup slides

VBF $Z' \rightarrow WW \rightarrow \ell\ell vv$ EXO-21-015

Four Z' decay channels are utilized: $e\mu$, $\mu\tau_{\rm h}$, $e\tau_{\rm h}$, and $\tau_{\rm h}\tau_{\rm h}$.

Figure 2: Combined 95% CL upper limits on $m_{Z'}$ as a function of the Z' branching fraction to (upper row) $\tau^+\tau^-$ and (lower row) W^+W^- for the (left column) $g_{\ell} = 0$ and (right column) $g_{\ell} = 1$ scenario. The red, green and blue curves show the observed limits corresponding to $\kappa_{\rm V}$ equal to 0.1, 0.5, and 1 respectively. The dashed curves and shaded bands show the expected limits with their 68% CL uncertainties.

1400

Reso & non-reso $X \rightarrow HH/HY \rightarrow \tau \tau \gamma \gamma _{EXO-22-012}$

CMS Preliminary

TITITI I TITI I TITITI

Events / 2

- Motivated by Warped Extra Dimensions and Extended Higgs sector models
 - heavy Higgs can decay to lighter Higgs
- HH $\rightarrow \gamma\gamma\tau\tau$ has small branching fraction but clean signatures (non-resonant not included here)
- four channels: $X^{(0)} \rightarrow HH$, $X^{(2)} \rightarrow HH$, $X \rightarrow Y(\tau\tau)H(\gamma\gamma)$, $X \rightarrow Y(\gamma\gamma)H(\tau\tau)$
- Narrow width resonance searches
- ${
 m X}
 ightarrow {
 m HH}$ for 260 < $m_{
 m X}$ < 1000 GeV
- X ightarrow Y($au au/\gamma\gamma$)H($\gamma\gamma/ au au$) for 50/70 < $m_{
 m Y}$ < 800 GeV
- Parametric NN is trained using multiple mass hypotheses vs backgrounds for each search channel
 - pNN output served for event categories
- Signal extraction is performed on $m_{\gamma\gamma}$ distribution
 - Main backgrounds from $\gamma\gamma$ +jets (non-resonant) and single-H production (resonant)
 - A maximum likelihood fit on $m_{\gamma\gamma}$ distribution is done for each probed mass and event category
 - Some deviations from background-only hypothesis are observed in $X \rightarrow YH$ channels
 - X \rightarrow Y($\tau\tau$)H($\gamma\gamma$) : 2.6 σ (2.2 σ) local (global) significance at ($m_{\rm X}, m_{\rm Y}$) = (320, 60) GeV
 - $X \rightarrow Y(\gamma \gamma)H(\tau \tau)$: 3.4 σ (0.1 σ) logal (global) significance at (m_X, m_Y) = (525, 115) GeV

m,, [GeV]

23/10/24

^{23/10/24}

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

SUS-23-012

Introduction to Analysis:

- The fundamental nature of DM is not known. Weakly interacting massive particle (WIMP) may interact with SM through the Higgs sector, as in Higgs-portal models. WIMP DM is denoted χ
- Signature of mono-Higgs: Higgs + missing transverse momentum (p_T^{miss})
- Benchmark models:

Signal extraction strategy:

Analysis Selection:

- \Box Select $e\tau$, $\mu\tau$, $\tau\tau$ pairs with opposite sign, third lepton-veto, bjet veto
- $\Box \quad \Delta R \ (lepton(e/\mu), \tau) > 0.5$
- \Box Higgs $p_T > 65 GeV$
- $\Box \quad Visible mass < 125 GeV$
- $\square MET > 105 \text{ GeV}$
- $\square M_{\rm T}^{\rm Tot} > 100 {\rm ~GeV}$

Signal is extracted based on the likelihood fit on the total transverse mass variable in the signal region

$$M_{\rm T}^{\rm tot} = \sqrt{(E_{\rm T}^{\tau_1} + E_{\rm T}^{\tau_2} + p_{\rm T}^{\rm miss})^2 - (p_x^{\tau_1} + p_x^{\tau_2} + p_x^{\rm miss})^2 - (p_y^{\tau_1} + p_y^{\tau_2} + p_y^{\rm miss})^2}$$

23/10/24

SUS-23-018

138 fb⁻¹ (13 TeV

Motivation

- Fermi-LAT space telescope observes a gamma-ray excess in studies of the Milky Way Galactic Centre <u>arXiv:1511.02938</u>
- Might be interpreted as the existence of weak-scale DM annihilating into bb pairs
- DM-nucleon interactions mediated by pseudoscalars are much below the reach of present DD experiments

Theoretical framework: 2HDM+a

- Two-Higgs Doublet Models extended with an additional pseudoscalar (DM mediator) <u>arXiv:1701.07427 arXiv:1705.09670</u>
- ightarrow Can reproduce the observed DM relic density for relatively large aneta
- · Would favor preferential coupling of DM mediator to down-type fermions
- Associated production of Heavy scalar with b-quarks is enhanced

Presenting new search involving final state with two bottom quarks, a leptonically decaying Z boson, and p_T^{miss}

Event Selection and Background Modeling

Baseline Selection

- Two oppositely charged leptons (e^+e^- and $\mu^+\mu^-)$ with invariant mass consistent with that of a Z boson
- Requiring lepton pair to be moderately energetic and to have a large separation w.r.t. p_T^{miss}

 $p_T^{\text{miss}} > 65 \text{ GeV } \& m_T^{p_T^{\text{miss}}, ll} > 90 GeV$

Signal region and background control regions

 Normalization of main four background controlled using subsidiary measurements in separate regions

Shape of DY modeling improved using data driven procedure, while the rest estimated mainly from simulation

Signal Extraction

- Multivariate discriminant (MLP) trained with leptonic and missing transfer momentum information
- Input: leading p_T^1 , trailing p_T^1 , p_T^{II} , ΔR^{II} , Δm^{II} , p_T^{miss} , $m_T^{IL,p_T^{miss}}$, $\Delta \phi^{IL,p_T^{miss}}$, and m_{T2}^{II} ,
- $\,\cdot\,$ Signal class: grouping of all simulated mass configurations for $m_{\!H}$ and $m_{\!a}$
- · Background class: All process contributions normalized to their expected yields
- MLP score is transformed and binned into 17 different subregions optimized of the different signal topologies studied

Interpretation in the 2HDM+a context

- Excluded regions on the parameter phase space for the 2HDM+a model
- Four projections the various 2D planes are shown
- Allowed phase-space values for each projection as estimated by assuming a range around the central value of $\langle \sigma v \rangle$ as resulting for assuming the observed DM relic density
- Some preferred regions of the phase-space largely excluded by this analysis

vy Search Motivation

• SM shortcomings indicate some kind of BSM physics:

ADD large extra dimension

- n_{ED} extra dimension
- compactified with average radius R
- effective $M_{\text{Pl}} \sim \text{TeV-scale}$ $M_{\text{Pl}}^2 \sim M_{\text{Pl}(4+n)}^{2+n} R^n$
- gravity has a strength comparable with the rest forces but dilutes in ED

- RS graviton (warped ED)
- one extra dimension
- compactified with r_c
- curvature k
- scales masses in 4D as: $m = e^{-kr_c\pi}m_0$
- scaling M_{Pl} ~TeV-scale (kr_c ~ 11-12)

Continuum Clockwork - coincides with a 5D gravitational theory - mechanism that can take large effective interaction scales from dynamics occurring at much lower energies (arxiv:161007962).

 These three models are:

 Solving hierarchy problem
 Introducing ED and graviton
 Can be visible in TeV-scale through KK graviton modes
 Leads to visible SM discrepancies in vy final state

Motivation: BSM physics beyond minimal

- Hierarchy: EW-M_{Pl} scale gap motivates BSM physics.
- No BSM physics yet \rightarrow time to look in non-standard final states/scenarios.

- LHC Signals from Cascade Decays of Warped Vector Resonances <u>arXiv:1612.00047</u>
 - Dedicated Strategies for Triboson Signals from Cascade Decays of Vector Resonances arXiv:1711.09920
 - Detecting a Boosted Diboson Resonance <u>arXiv:1809.07334</u>

Theory sources:

Kaustubh Agashe, et al

his talk at CMS

EWED landscape & CMS searches

← This search PAS

3

3

4.4

3.5

3.5

5.1

← 2201.08476 & 2112.13090

23/10/24

 $W/Z_{\rm KK}$

 $W_{\rm KK} \to W_l \varphi \to W_l gg \ (5.3)$

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

2.5

3

1

1.5

3.5

3

W-Wgg-BP1

W-Wgg-BP2

Signal topology & Preselection

- We use benchmark point at which the dominant process is: $g_{KK} \rightarrow gR \rightarrow gWW$
- Big advantage of the W-tagging & narrow mass-window to suppress BKG.

- g_{KK} is spin-1, R is spin-0
- We focus on the Ol channel: $g_{KK} \rightarrow gR \rightarrow gWW \rightarrow jets$ (BR~56%)
- We cover only the resolved R case: $0.2 < m_R/m_{qKK} < 0.9 \rightarrow 3$ jets

- 1. Tri-jet selection,
- identify (tag) 2 jets as
 W-candidates with PNet,
- 3. form m_{jj} (R) and m_{jjj} , (g_{KK}),
- 4. bin over m_{jj} , fit m_{jjj} . \rightarrow

Preselection cuts:

2.
$$p_{Tj1(j2,j3)} > 400$$
 (200) GeV,
 $|n_1| < 2.4$ $n = -\ln[\tan(\theta/2)]$

3.
$$m_{ja,jb} > 50 \text{ GeV},$$

4.
$$H_T \equiv \sum_i p_T(jet[i]) > 1.1 \text{ TeV}$$

23/10/24

Datasets, Trigger, & MC samples

Mean number of interactions per crossing

W-candidate selection on m_{iet}

130

120

110

100

90

80

70

60

 $W \rightarrow qq$ are boosted: using the <u>anti-KT</u> algo form single AK8 jets

Boosted jets: Increasing transverse momentum

- The 2 highest <u>ParticleNet</u> score jets j_a , j_b are assigned to be the W-candid., gluon is j_c .
- We demand the jets <u>Soft Drop</u> masses m_{ia,ib}, to be on W-peak with the condition of m_{85} variable: $m_{85} \equiv \sqrt{(m_{ja} + 85)^2 + (m_{jb} + 85)^2} < 15 \text{ GeV}$
- We define 3 regions based on m_{85} :
 - Signal Regions (SRs) have: $m_{85} < 15$ GeV.
 - Control Regions (CRs) are: $m_{85} > 15 \text{ GeV} \& m_{90} < 50 \text{ GeV}$
 - Validation Regions (VRs): $15 < m_{85} < 20$ GeV.

We use the anti-kT algo to cluster individual particles (PF candidates) into jets (using clustering param. R).

23/10/24

23/10/24

R, gKK reconstruction & SR binning

- M_R reco. from j_a , j_b : $m_{ij}*\equiv m_{ij}-mja-m_{jb}+2(85~GeV)$
- M_{qKK} reco. from j_a , j_b , j_c : $m_{iji} * \equiv m_{iji} - m_{ia} - m_{ib} + 2(85 \text{ GeV})$
- \rightarrow i.e. we correct invariant masses to mitigate reso. effect from jet SD masses. \rightarrow sharper peaks (see Fig.4). \rightarrow ~3% significance gain.
- From ratio m_{ii}*/m_{iii}* and define 5 bins SR1 $-5 \rightarrow$
- Effectively binning over m_R.
- In each of these 5 SR we have 2 SRs (SRa, SRb) based on PNet scores.
- Thus, we have 10 SRs.
- We fit the m_{iii}* spectra.

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

15

10

BKG prediction in 10 SRs

SR full selection summary

- 1. N_{j-AK8}=3, N_{lep}=0,
- 2. p_{Tj1(j2,j3)}>400(200)GeV $|\mathbf{\eta}_{i}| < 2.4$
- $m_{ja,jb} > 50 \text{ GeV},$ 3.
- $H_{T} > 1100 \text{ GeV},$ 4.
- 5. $m_{85} < 15 \text{ GeV},$
- PNet > 0.8, & binning6.

7. $|\Delta \mathbf{\eta}_{ii}|^{\max} < 3$

23/10/24

N_b=0 (CHS, tight, deepflavor) 8.

10 SRs categories:

Region	m_{jj}^*/m_{jjj}^*	s _{jb}
SR1a	< 0.28	> 0.9
SR1b	< 0.28	0.8–0.9
SR2a	0.28 0.42	> 0.9
SR2b	0.20-0.43	0.8–0.9
SR3a	0.42.0.57	> 0.9
SR3b	0.43-0.57	0.8–0.9
SR4a	0.57.0.72	> 0.9
SR4b	0.37-0.72	0.8–0.9
SR5a	> 0.72	> 0.9
SR5b	> 0.72	0.8–0.9

QCD multijet 80-90%

- Dominant \rightarrow data-driven prediction
- Form Control Regions (CRs) defined in $m_{ia,ib}$ sideband as: m_{85} >15 & m_{90} <50 GeV keeping the rest conditions as in SRs.
- Form 10 CRs: CR1–5a & CR1–5b
 - Similar kinem/cs to SRs; high QCD purity.
 - Predict QCD with \rightarrow Pred_{SRxy} \equiv [Data Rest]_{CRxy} $\frac{QCD_{SRxy}}{QCD_{CRxy}}$
 - We validate QCD pred. in 10 VRs (defined by 15<m₈₅<20 GeV).

mj_{a(b)}

130

100

70

50

70

100

QCD_{SRxy}

130

mj_{b(a}

CR

- Top (tt, single t) 3–8% Other (V+jet, VV) 8–16%
- Subdominant BKGs \rightarrow use MC for prediction
- We correct the MC applying SFs for PNet selection eff. per • matched $W \rightarrow qq$ jets.
- We validate Top MC (shape & rate) in dedicated samples (bRs) like the SRs but with $N_b \ge 1$.
- We assign conservative (large) rate unc. for these 3 BKGs.

Systematic Uncertainties

		Uncertainty source	Effect on	Magnitude	Number of NPs & correlations
		Normalization QCD	Rate	20% 60	10, uncorr. across SRs
Û		Normalization Top	Rate	50% Dom	linant 10, uncorr. across SRs
$\mathbf{\Sigma}$		Normalization Other	Rate	30%	10, uncorr. across SRs
മ	QCD	bkg. shape due to m_{90} usage	Shape	$\pm 1\sigma$ templates	10, uncorr. across SRs
	QCD bk	kg. shape due to other processes	Shape	$\pm 1\sigma$ templates	10, uncorr. across SRs
RA SHA		QCD 20% based on validation Top 50% based on data in bRs All uncorrelated across 10 Vary "rest" in QCD BKGs	on prefit di s, Other 3 SRs -> 3 predictio	sclosure & MC low 30% based on simil 0 nuisances. on by x2 down, x0 up	stat. ar search ¹³⁰ 100 SR
5117	•	Shift CR circle center: m90<	50 (central) →	m ₈₅ <50 (down), m ₉₅ <50	(up). $50 - 50 - 70 - 100 - 130 - 1$
	PU r	eweighting & int. luminosity	Rate	1.7%	1, correlated across all SRs
ש		PDFs	Rate	$\leq 10\%$	1, correlated across all SRs *
	μ_R/μ_F scales		Rate	< 0.8%	1, correlated across all SRs *
\mathbf{O}	PNet _W selection eff. per jet (event)		Rate	6% (12%) 🗲 [1, correlated across all SRs
$\overline{\mathbf{n}}$		JEC	Shape	$\pm 1\sigma$ templates	ant lated across all SRs *
		JER	Shape	$\pm 1\sigma$ templates	1, correlated across all SRs *

- RATE Lumi, PU, PDFs, QCD scales μ_F , μ_R : 1—10%
 - PNet SFs unc. \rightarrow 6% [12%] per jet [event] (we have 2 W \rightarrow qq jets/event)
- SHAPEJEC & JER: $+\sigma/-\sigma$ variations \rightarrow forming templates per point, per SRs.23/10/24New Resonances Decaying into Bosons Antonis Agapitos, PIC 24

Results: SR1a—SR5a

We fit simultaneously the m_{jjj}* spectra in the 10 SRs, using <u>Combine</u> tool:

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

Results: SR1b—SR5b

We fit simultaneously the m_{iii}* spectra in the 10 SRs, using <u>Combine</u> tool:

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

Interpretation: **o**B & m_{gKK}-m_R limits

- We set upper limits, at 95% CL, on σ B, and lower limits on m_{gKK}-m_R masses plane:
- Expected and observed in agreement within $\sim 0.5\sigma$.

 $\sim O(\text{TeV})$

SM q

 $\sim O(10)$ TeV Higgs brane

- 138 fb⁻¹ (13 TeV) [q] AB [tp] م²01 **CMS** *Preliminary* Expected central Expected, 68% CL 95% CL observed upper limit on 10 2000 4000 2500 3000 3500 4500
- Read our full paper (PAS) <u>here</u> for more.
- Visit the CMS <u>B2G public results</u> page and see our <u>summary plots</u> for more.

23/10/24

UV

The CMS detect at the LHC

CMS

Compact Muon Solenoid Mass: ~12500 Tones Size: ~15m x 22m Magnetic field: 4 T (3.8 T) CMS collaboration is 30 y.o. ~6100 collaborators ~250 Institutes ~57 countries <u>here for more</u>

eta = 0.8 /

 $\eta = -\ln[\tan(\theta/2)]$

RPC

H

23/10/24

Motivation for a Diboson search

- SM shortcomings indicate some kind of New Physics (Hierarchy, Unific. DM, DE)
- 1. (Bulk RS) Warped ED, spin-0 Radion ($krc\pi = 35$, $\Lambda_R = 3 T eV$) spin-2 Bulk Graviton ($\sim k = 0.5, 1.0, ...$)

- Predict new heavy bosons at TeV
- 3 production modes:
- Decay modes include VV, VH

2. Heavy vector triplet (HVT) spin-1 Z',W', coupling with SM \rightarrow Models A, B, C

- 3. Little Higgs models
- 4. Two Higgs doublets models (MSSM)

ā

- 5. Extended WED models ($V_{KK} \rightarrow RV$)
- 6. Technicolor models

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

V/V

V/H

- Models: NMSSM 0910.1785, Two-real-scalar-singlet extension 1908.08554
- 2D search over M_{ii}, M_i^Y variables
- 2 (wide) jets, m_{H(Y)}: 110-140(>60) GeV, |Δη_{ii}|<1.3
- Tagging with Graph CNN (ParticleNet), mistag~0.5%, eff~70%, calibration with $g \rightarrow bb$ jets

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

H-candidate ParticleNet score

$X \rightarrow VV, VH$ in DY/gg & VBF

B2G-20-009

$(Y) \rightarrow XX \rightarrow (jj)(jj)$ paired di-jets

- 4 narrow jets \rightarrow paired to 2 di-jets, symmetrized masses: $\frac{|m_1 m_2|}{m_1 + m_2} < 0.1$
- Search over: m_{4j} and average di-jet mass \overline{m}_{jj} ; fit 3p-function to the data in slices of $\frac{m_{jj}}{m_{4j}}$

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

CMS

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

 N_{ℓ}

LRSM: Z', W_R^{\pm} , $N_{e/\mu/\tau}$

Off-shell $W_{R}^{\pm *}$, no mixing

 $\mathrm{m_{N_\ell}} < m_{\mathrm{W_{e^*}}^\pm} = 5~\mathrm{TeV}$

$Z' \rightarrow NN \rightarrow \ell j j \ell j j$ Heavy Majorana Neutrino pair

- ee, $\mu\mu$ (OS & SS), $m_{\not\!\ell\ell}>150~{\rm GeV}$
- Resolved & Boosted probed

Binning on # of wide AK8 jets:

SR	N(AK8 jet)	N(tight leptons)	N(AK4 jet)
SR1 (0AK8)	= 0	= 2	≥ 4
SR2 (1AK8)	= 1	≥ 1	≥ 2
SR3 (2AK8)	≥ 2	—	

- Reconstruct N_{ℓ} as "jj ℓ " and $m_{Z'}$ minimizing $m(jj\ell)$ -asymmetry
- Prediction from eµ, $m_{\ell\ell}$ SBs

• First search of this type for Run2

Best direct limits on $m_{Z^{\prime}}$, m_{N} plane

23/10/24

- Composite-fermion models 1510.07988, 1707.00844, 1810.00374, 1903.12285
 - \rightarrow Excited states of SM fermions
 - \rightarrow Effective interactions: gauge (GI) & contact (CI) between ordinary and excited fermions
 - \rightarrow m(N_l): [500 GeV, \land]

- ee, $\mu\mu$ (SS&OS), m($\ell\ell$)>300 GeV, \geq 1 wide AK8 jet
- Use eµ, $m_{\ell\ell}$: 150-300 GeV as CRs
- Fit: $m(\mathcal{U}J)$ constrain separately N_{μ} , N_{e} masses

Vector-like lep. pair LL \rightarrow ... \rightarrow 4b, $\tau \tau / \tau \nu / \nu / \nu \nu$

 Model 4321 <u>1808.00942</u>, <u>1708.08450</u>
 Potential to explain B-physics anomalies: R(D*), R(K), evidence for LFV

• EW production of VLL-pair, decay via off-shell vLQ: U

 VLL → 3rd gen fermions: b/t, τ/ν_τ (3-body decay) due to flavor non-universal coupling of vLQ: U

- Wealth of signatures:
- Focus on events with: ≥3 b-jets 0,1,2 τ_h 0,1,2 ν_τ (MET)
- Tagging:
 - DeepTau
 - DeepJet(b)

	final state		
	$4b+4j+2\nu_{ au}$		
0τ	$4b+6j+2\nu_{ au}$		
	$4b+8j+2 u_{ au}$		
	$4b + 2j + \tau + \nu_{\tau}$		
1 ~	$4b+4j+\tau+\nu_{\tau}$		
11	$4b+4j+\tau+\nu_{\tau}$		
	$4b + 6j + \tau + \nu_{\tau}$		
	$4b + 2\tau$		
2 τ	$4b+2j+2\tau$		
	$4b+4j+2\tau$		

- DNN (<u>ABCNet</u>) to reject QCD and tt
- Binning and fitting over: #j, # τ_h , DNN_{tt}

23/10/24

Resonant Triboson: $X \rightarrow WR \rightarrow WWW$

Extended (3 branes) Warped ED model

$(Y) \rightarrow XX \rightarrow (jj)(jj)$ paired di-jets

CMS

Majorana Neutrinos & Weinberg Op. Probe

Introduction: Physics Background

- Confirmed by neutrino oscillation experiments
- Not included in the SM
- → Why no neutrino mass mechanism in the SM?

Takaaki Kaiita

The Nobel Prize in Physics 2015 The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2015 to

Arthur B. McDonald

- * $SU(2)_L \times U(1)_Y$ EW symmetry & only Dimension-4 operators in Lagrangian
- Economical particle content:
 - Only left-hand neutrinos, Dirac mass is thus forbidden.

→ To generate neutrino masses, one must go beyond the SM:

Potential BSM particle solution: Seesaw models

$X \rightarrow WV, WH \rightarrow Iv qq/bb$

Х

∕ ອີ 500

Events / 300

200

100

ഹ

CMS

Preliminar

137 fb⁻¹ (13 TeV)

μ, HP, nobb, LDy

Data

W+V/t

W+jets

0 10³

25

Events /

10

CMS

Preliminarv

137 fb⁻¹ (13 TeV)

μ, HP, nobb, LDy

Data

W+iets

W+V/t

- 2D fit to the m_{Jet} , M_{WV} masses
- V/H-tagging: T_{21}^{DDT} , double-b tagger
- W_{Iv}, J, back-to-back
- 2 forward jets for VBF, 0 b-jets
- 24 categories based on 4 criteria: e/μ , L/H purity, VBF/bb/nobb, L/H $\Delta y_{J,lv}$
- BKGs: non-reso (W+jets), reso (tt) Prediction with kernel-approach at M_{WV}

23/10/24

$X \rightarrow ZV \rightarrow vv qq$

 $\bigcup_{g} G, R \xrightarrow{\bar{q}} q$ $\underset{\bar{q}'}{\overset{g}{\longrightarrow}} W, W, W, W, W, W, W, W, Q$ $\underset{\bar{q}'}{\overset{g}{\longrightarrow}} W, W, W, W, W, W, Q$ $\underset{\bar{q}'}{\overset{g}{\longrightarrow}} Q$ $\underset{\bar{q}''}{\overset{g}{\longrightarrow}} Use M_{T}(J, p_{T}^{miss}) as observable; T_{21} for V-tagging; veto b, I, T_{h}, \gamma, p_{T}^{miss} \parallel j events$

- Categorization to 4 sample: VBF, ggF/DY topology |Δη_{ij}|<4, η₁η₂<0,m_{ij}>500 GeV τ₂₁ High/Low purity τ₂₁<0.35, 0.35<τ₂₁<0.75
- SR: 65<m_J<105 GeV; CR: m_J sideband (m_J: 30-65, 135-300 GeV)
- Dominant BKG: W/Z+jets, estimated from the data in CR per M_T bin

$X \rightarrow W\gamma \rightarrow qq \gamma$

- W→qq merged (R=0.8) jet
- W-tagging with T_{21} , m_J^{SD}
- Central γ

23/10/24

- Main BKG: γ+jets
- Low m_J^{SD} as CR
- BKG estimate: fitting analytic function to M_{Jγ}
- Best limits to date on: $\sigma_{pp \rightarrow X} \times Br(X \rightarrow Wqq\gamma)$
- Model (in)dependent limits spin 0&1, narrow/broad

$X \rightarrow RW \rightarrow WWW \rightarrow Iv jets^{B2}$

- First tri-boson search
- New model: Extended Warped ED
 → suppressed di-SM processes
 → enhanced tri-SM processes

- Only EW in extended bulk dominant: $V_{KK} \rightarrow R V \rightarrow VVV$ Di-resonant
- W→Iv: reconstruction
- 1 or 2 AK8 massive jets, 0 b-jet
- deep-AK8 taggers for W & R
- Radion tagging with $H_{4q} \& W_{qq}$
- Calibration with SM-proxy jets: top for R^{3q,4q}, W for R^{lqq}

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

Merged Radion Resolved Radion (q) ν(q') W W_{KK} WKK let W R W q (v) let ā′ (ν) Jet ā′ (l)

Triboson results

B2G-20-001 CMS

- Probe simultaneously merged & resolved
- Categorize to 6 SRs: SR1-3 → 1 jets (merged) → M_{Ivj} SR4-6 → 2 jets (resolved)→ M_{Ivjj}

• First limits on $\sigma(W_{KK} \rightarrow RW \rightarrow WWW)$ and on [M_{WKK}, M_R] space

23/10/24

$X \rightarrow W_Y \rightarrow qq \gamma$

W±

 W^{\pm}

- Generic search for $V_{qq}+\gamma$
- W→qq AK8 jet
- tagging with T_{21} <0.35
- p_{Tj(γ)}>225 GeV, |η_{j(γ)}|<2(1.44)
 ΔR_{Jγ}>1.1, p_{Tγ}/m_{Jγ}>0.37, cosθ*<0.6
- Main BKG: γ+jets
- Calibration from low m_j CR
- BKG estimate: fitting analytic function to M_{Jγ}
- Best limits to date on: $\sigma_{pp \rightarrow X} \times Br(X \rightarrow Wqq\gamma)$

 Model independent limits for spin 0,1, narrow 0.01%, broad 5%

- Triplet pseudo-Goldstone bosons π_3 (https://arxiv.org/pdf/1608.01675.pdf)
- Scalar or pseudoscalar SU(2)_L $\, \Phi^{\alpha} \,$ coupling via anomaly-induced interaction
- Two Higgs doublet (H+) MSSM
- Technicolor
- HVT

JER: 15%, 8%, 4% for 10, 100, 1000 GeV

23/10/24

HVT couplings

Coupling strengths scale factors

HVT	$g_F = g^2 c_F / g_V$	$g_H = g_V c_H$	g _∨	C _H , C _F	Pheno
Model A	-0.55	-0.56	1		BF(f,f)~BF(V,V)
Model B	0.14	-2.9	3	-0.98, 1.02	DY (min. composite H)
Model C	0	-0.56	1	1, 0	VBF (Fermiophobic)

Heavy vector triplet (HVT) coupling with SM: c_H , gV, cFspin-1 Z', W' model A (comparable BF to f, V, $g_V = 1$) model B ($c_H = -0.98$, gV = 3, cF = 1.02), DY model C ($c_H = gV = 1$, cF = 0), VBF only

Parameter	Model A	Model B	Model C
c_H	-0.556	-0.976	1
c_F	-1.316	1.024	0
g_V	1	3	1

More at : https://arxiv.org/pdf/1906.00057.pdf

23/10/24

Motivation for a Diboson search

• Therefore we can search for BSM Physics in Dibosons FSs

→ HOW TO... search?

Probing Diboson FS at TeV-scale is a challenge to reconstruct boosted & merged V/H reveling substructure

- Selection based on V-like objects suppressing BKG
- Predict in a Data-Driven way the SM BKG
- Look for a peak-structure at M_{VV} tails

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

V/H

Motivation for "tri-object" search

- M_{PI}-EW scale gap motivates BSM physics (hierarchy problem)
- No BSM physics yet → time to look at non-standard final states/scenarios

Standard (Minimal) Warped ED model

- 2 Branes in Bulk (in the RS framework)
- Everything propagates to the same bulk
- Constrained by LHC searches

00000

 $gluon_{KK}$

 W_{KK}^{\pm}

 Z_{KK}

 \overline{t}, H, W^+

Extended Warped ED model:

- Extra brane by splitting → Extended Bulk
 3 (or more) branes, 2 (or more) Radions
- Various fields propagate in diff. regions

- A wealth of new signatures emerges
- "di-SM" suppressed in favor of "tri-SM"

K. Agashe's <u>talk</u> arXiv:1711.09920 arXiv:1612.00047

23/10/24

 \bar{q}

Jet tagging with deepAK8 framework

- 17 jets categories/scores
- Mass-decorrelated versions
- Powerful BKG rejection (binarized)

Extra power from modularity:

non-binarized, customized taggers

but comes with the price of N/A SFs

Modularity reveals the actual power of deep-AK8,

JME-18-002 Output				
Catego	ry Label			
	H (bb)			
Higgs	H (cc)			
	H (VV*→qqqq)			
	top (bcq)			
Top	top (bqq)			
iop	top (bc)			
	top (bq)			
w	W (cq)			
-	W (qq)			
	Z (bb)			
z	Z (cc)			
	Z (qq)			
	QCD (bb)			
	QCD (cc)			
QCD	QCD (b)			
	QCD (c)			
	QCD (others)			

We use two taggers:

W tagging with "binary" scores

deep-W =
$$\frac{W_{qq,qc}}{QCD_{g,q,b,...}} + W_{qq,qc}$$

Radion tagging with hybrid:

•

•

Parameters & conventions in Diboson searches

Several signal benchmark scenarios are used to interpret the results of the search. Spin-0 ra-98 dions [38–40] and spin-2 gravitons [41–43] decaying to WW are generated for the bulk scenario 99 of the RS model of warped extra dimensions [7, 8]. For bulk gravitons, denoted as G_{bulk}, the ra-100 tio \tilde{k} of the unknown curvature scale of the extra dimension k and the reduced Planck mass $\overline{M}_{\rm Pl}$ 101 is set to $\tilde{k} = 0.5$, which ensures that the natural width of the graviton is negligible with respect 102 to the experimental resolution [44]. For bulk radions, we consider a scenario with $\Lambda_R = 3$ TeV 103 and kl = 35 [44]. Spin-1 resonances decaying to WW, WZ, or WH are studied within the HVT 104 framework [9] in the benchmark model B (Drell-Yan production) and model C (vector boson 105 fusion). The HVT framework introduces a triplet of heavy vector bosons with similar mass, of 106 which one is neutral (Z') and two are electrically charged (W' $^{\pm}$). Its benchmark models are ex-107 pressed in terms of a few parameters: the strength $c_{\rm F}$ of the couplings to fermions, the strength 108 $c_{\rm H}$ of the couplings to the Higgs boson and longitudinally polarized SM vector bosons, and 109 the interaction strength g_V of the new vector boson. In HVT model B ($g_V = 3$, $c_H = -0.98$, 110 $c_{\rm F} = 1.02$ [9]), the new resonances are narrow and have large branching fractions to vector bo-111 son pairs, while the fermionic couplings are suppressed. In model C ($g_V \approx 1$, $c_H \approx 1$, $c_F = 0$), 112 the fermionic couplings are zero, and the resonances are produced only through vector boson 113 fusion and decay exclusively to pairs of SM bosons. Monte Carlo (MC) simulated samples 114 for bulk radions, bulk gravitons, and resonances of the HVT models are generated at leading 115 order (LO) in quantum chromodynamics (QCD) with MADGRAPH5_aMC@NLO versions 2.2.2 116 and 2.4.2 [45]. For each model, resonance masses in the range 1.0-4.5 TeV are considered, and 117 the resonance width is set to 0.1% of the resonance mass, which ensures that the narrow-width 118 approximation is fulfilled, thereby making our modelling of the detector effects on the signal 119 shapes independent of the actual benchmark scenario used to generate the events. 120

23/10/24

Tools for BSM multiboson searches

- \rightarrow anti-kt clustering
- → Large-R jets: $\Delta R = \sqrt{(\Delta \phi^2 + \Delta \eta^2)} \approx 2m/p_T$
- → "Groomed" Soft-Drop Masses: $M_J \sim M_V \pm 0.2 M_V$

Taggers based on (2-prong) substructure

- $\tau_N = \underline{N-subjettiness} \rightarrow ratios: \tau_2/\tau_1 = \tau_{21} \rightarrow \tau_2$
- Decorrelated taggers T₂₁^{DDT}

Deep-NN taggers & Image taggers (soon)

MET + lep from Boson:

→ Reco the W(H) assuming $M_{W(H)}$ =80(125) GeV

b-jet tagging based on MVA, DNN

PU effect \rightarrow Pile Up Per Particle Identification (PUPPI)

23/10/24

New Resonances Decaying into Bosons - Antonis Agapitos, PIC 24

10 15 20 25 30

15 20

QCD

$$T_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

W,Z,H

q/g