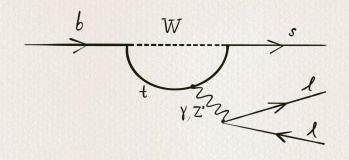

The buzz of $b \rightarrow sll$ and why it still matters

Focus on B⁰→K^{*0}ee angular analysis @ LHCb experiment

PIC24, Athens

2024 October 23rd



 $b \rightarrow sll$ transitions are good laboratory to explore higher energy scale

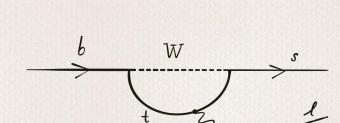
 $B \sim 0 (10^{-6})$

Sensitive to New Physics (NP) at the TeV scale

NP can affect the decay rates and angular distributions

Standard Model

Feynman diagram

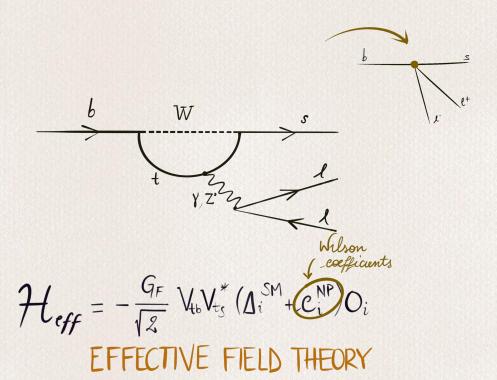


Nikhef

and why it still matters

The buzz of b →sll

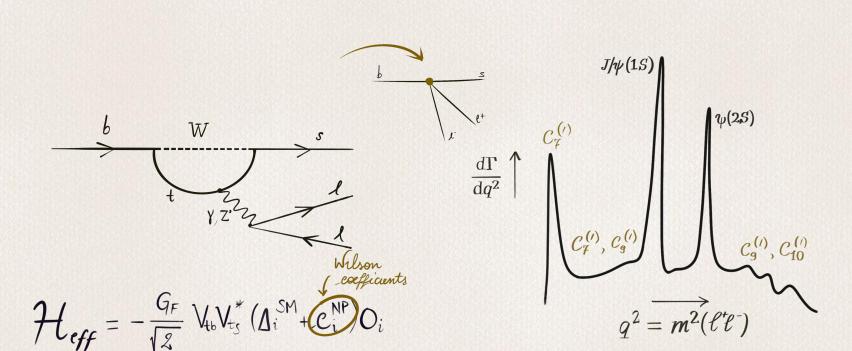
PIC24 2023 Oct 23 Athens



$$\mathcal{H}_{eff} = -\frac{G_F}{\sqrt{2}} V_{4b} V_{ts}^* (\Delta_i^{SM} + \mathcal{L}_i^{NP}) O_i$$
EFFECTIVE FIELD THEORY

The buzz of b→sll and why it still matters

PIC24 2023 Oct 23 Athens



The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

Alice Biolchini

EFFECTIVE FIELD THEORY

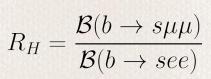
гнср

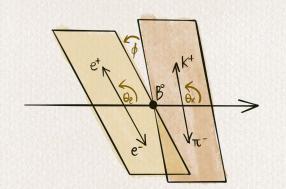
The buzz of b →sll and why it still matters

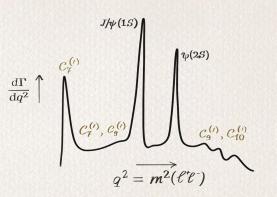
PIC24 2023 Oct 23 Athens

Alice Biolchini

Last measurements


Recent results of Belle2 and LHCb in rare decays by Chandiprasad Kar, today


Theoretical uncertainties


Ratio of BFs

Angular Analyses

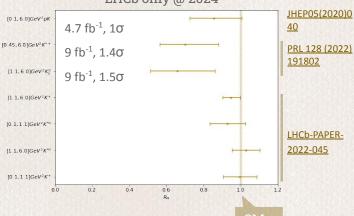
Differential branching fractions

LHCb THCb

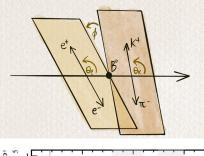
The buzz of b →sll and why it still matters

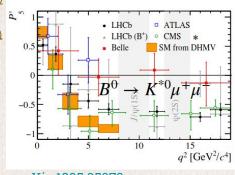
PIC24 2023 Oct 23 Athens

Last measurements

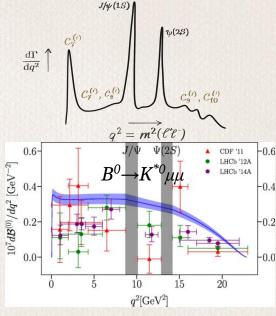

Recent results of Belle2 and LHCb in rare decays by Chandiprasad Kar, today

Theoretical uncertainties


Ratio of BFs


$R_H = \frac{\mathcal{B}(b \to s\mu\mu)}{\mathcal{B}(b \to see)}$

LHCb only @ 2024


Angular Analyses

arXiv:1805.05073

Branching fractions

Phys. Rev. D 107, 014511 (2023)

The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

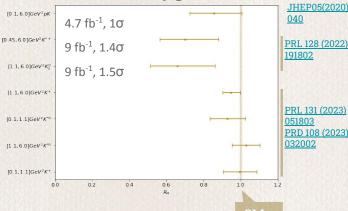
Alice Biolchini

Nikhef

7

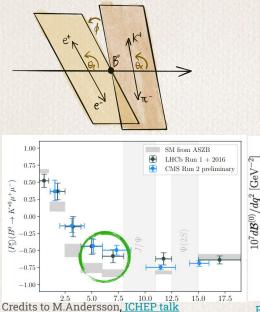
Last measurements

Chandiprasad Kar, today

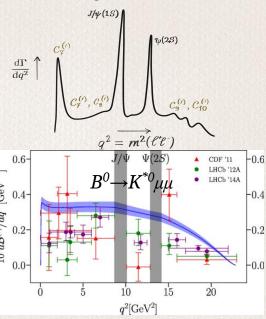

Recent results of Bellez and LHCb in rare decays by

Theoretical uncertainties

Ratio of BFs


$R_H = \frac{\mathcal{B}(b \to s\mu\mu)}{\mathcal{B}(b \to see)}$

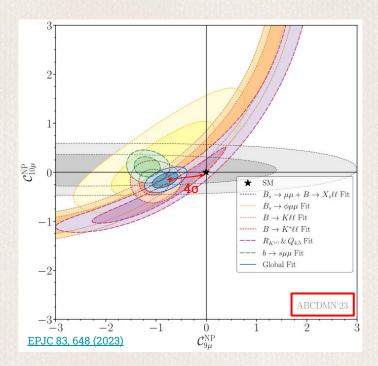
LHCb only @ 2024

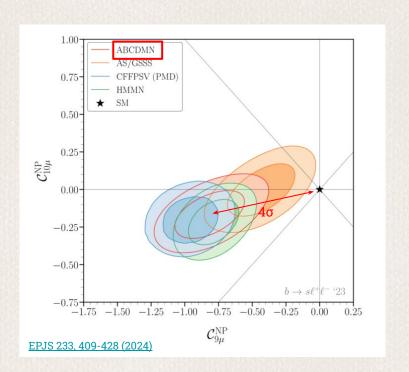


Angular Analyses

CMS results LHCb results

Branching fractions



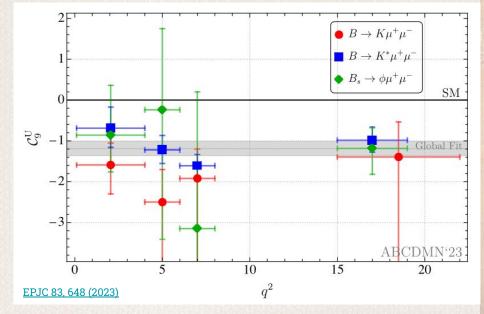

Phys. Rev. D 107, 014511 (2023)

The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

Wilson Coefficients global fits

The buzz of b →sll and why it still matters

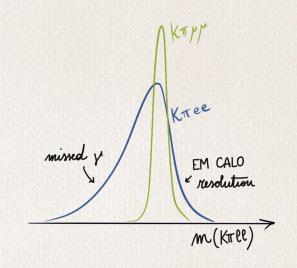

PIC24 2023 Oct 23 Athens

LFU conservation hypothesis

LHCP

- B→Kμμ:
 - o BF
- B→K*μμ
 - o BF
 - Angular observables
- Bs $\rightarrow \phi \mu \mu$
 - o BF
 - Angular observables
- Gray band:
 - o 1 σ confidence interval for the global fit to $C_9^{(U)}$

$$(\mathcal{C}_{9\mu}^{NP}=\mathcal{C}_{9e}^{NP}=\mathcal{C}_{9}^{U})$$


The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

Electrons are a challenge

LHCb upper view

The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

Electrons are a challenge

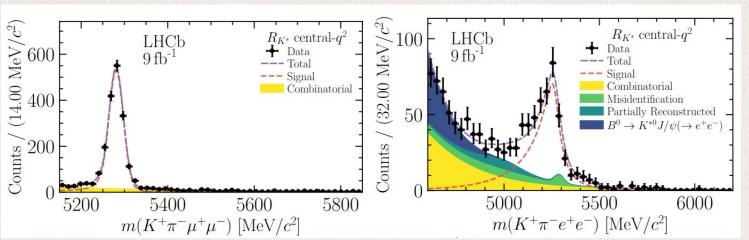
THCP

The buzz of b →sll and why it still

matters

PIC24

2023 Oct 23


Athens

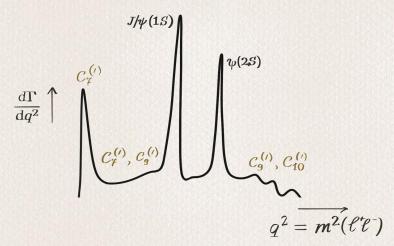
Alice Biolchini

Few signal events and a lot of background

$$B^0 \rightarrow K^{*0} \mu \mu$$

$$B^0 \rightarrow K^{*0}ee$$

PRL 131 (2023) 051803 PRD 108 (2023) 032002


Nikhef

12

New LHCb results in b→sll decays

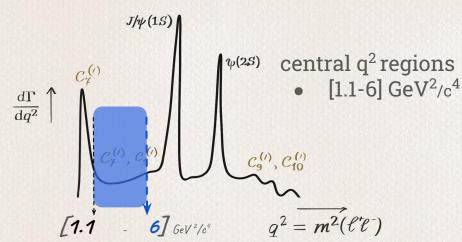
The waiting is over!

• $B^0 \rightarrow K^{*0}$ ee angular [LHCB-PAPER-2024-022-001, Preliminary]

• $B^0 \rightarrow K^{*0} \mu \mu$ analysis of local and non-local amplitudes \rightarrow Zahra Ghorbanimoghaddam's talk, tomorrow!

N. Lytras, The Waiting, 1900

The buzz of b →sll and why it still matters


PIC24 2023 Oct 23 Athens

> Alice Biolchini

New LHCb results in b→sll decays

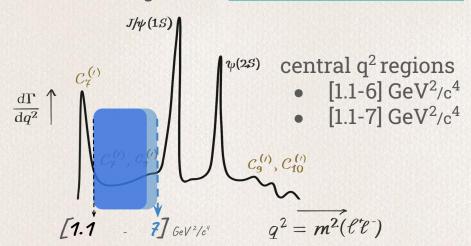
The waiting is over!

• $B^0 \rightarrow K^{*0}$ ee angular [LHCB-PAPER-2024-022-001, Preliminary]

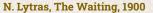
• $B^0 \rightarrow K^{*0} \mu \mu$ analysis of local and non-local amplitudes $\rightarrow \underline{\textit{Zahra Ghorbanimoghaddam's talk}}$, tomorrow!

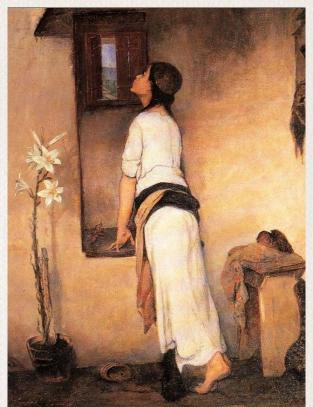
LHCP

The buzz of b→sll and why it still matters


PIC24 2023 Oct 23 Athens

> Alice Biolchini

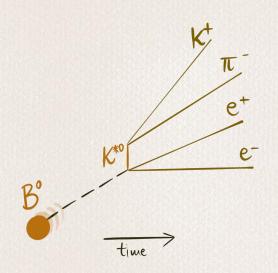

New LHCb results in b→sll decays

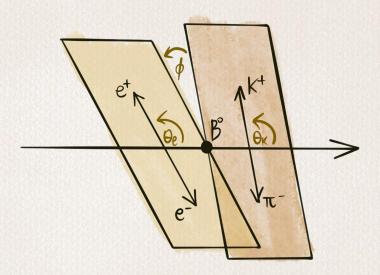

The waiting is over!

• $B^0 \rightarrow K^{*0}$ ee angular [LHCB-PAPER-2024-022-001, Preliminary]

• $B^0 \rightarrow K^{*0} \mu \mu$ analysis of local and non-local amplitudes \rightarrow Zahra Ghorbanimoghaddam's talk, tomorrow!

The buzz of b→sll and why it still matters


PIC24 2023 Oct 23 Athens


> Alice Biolchini

$B^0 \rightarrow K^{*0}$ ee angular analysis

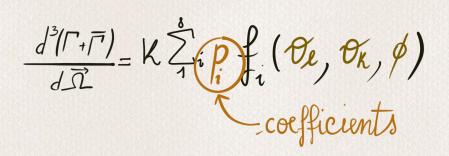
THCP

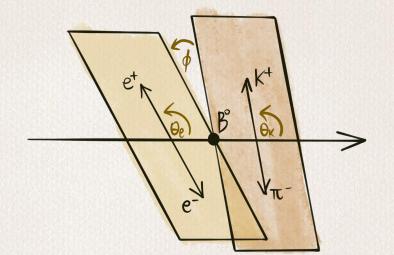
The decay is described by 3 angles (θ_{l} , θ_{k} and ϕ)

The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

$B^0 \rightarrow K^{*0}$ ee angular analysis


THCP


The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

> Alice Biolchini

The decay is described by 3 angles ($\theta_{\rm l}$, $\theta_{\rm K}$ and ϕ)

THE GOAL: Measure coefficients describing the angular distribution

Nikhef

17

Parametrise detector acceptance

LHCb THCp

- 4D space $\rightarrow (\theta_1, \theta_K, \phi, q^2)$
- Legendre polynomials and Fourier terms

$$\epsilon(\cos\theta_{\ell},\cos\theta_{K},\phi,q_{c}^{2}) = \sum_{k,l,m,n} c_{k,l,m,n} L_{k}(\cos\theta_{K}) L_{l}(\cos\theta_{\ell}) F_{m}(\phi) L_{n}(q_{c}^{2})$$

Coefficients obtained via Monte Carlo integration:

$$c_{k,l,m,n} = \frac{1}{N'} \sum_{i=1}^{N} w_i \left[\left(\frac{2k+1}{2} \right) \left(\frac{2l+1}{2} \right) \left(\frac{2m+1}{2} \right) \left(\frac{2n+1}{2} \right) \right] L_k(\cos\theta_{li}) L_l(\cos\theta_{ki}) F_m(\phi_i) L_n(q_i^2)$$

weights accounting for DATA-SIMULATION differences

Acceptance efficiency used as a per event weight:

$$\omega_{\rm gen} = 1/\epsilon_{\rm gen}$$

The buzz of b→sll and why it still matters

PIC24 2023 Oct 23 Athens

Fit strategy

- Full Run1 + Run2 LHCb data (9 fb⁻¹)
 - Simultaneous fit to [2011-2012], [2015-2016], [2017,2018] data subsets
- 4D Unbinned weights fit to mass and angles

Likelihood
$$- \sum_{events,e} \frac{1}{\epsilon_e(\vec{\Omega},q^2)} \cdot \ln \mathrm{PDF}(\vec{\Omega},m|\vec{\Theta},\vec{\lambda})$$

Mass and angular distributions, are assumed to factorise

Determination of CP-averaged S_i and optimised P_i^(*) observables

$$P_{1} = \frac{2S_{3}}{(1 - F_{L})} = A_{T}^{(2)},$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{(1 - F_{L})},$$

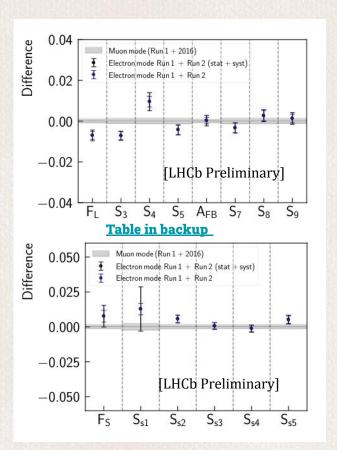
$$P_{3} = \frac{-S_{9}}{(1 - F_{L})},$$

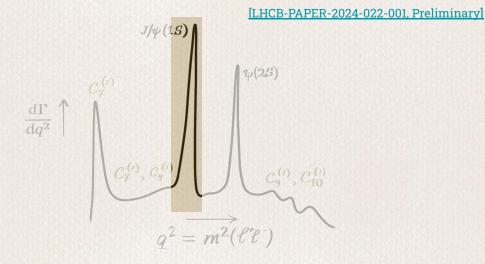
$$P_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{L}(1 - F_{L})}},$$

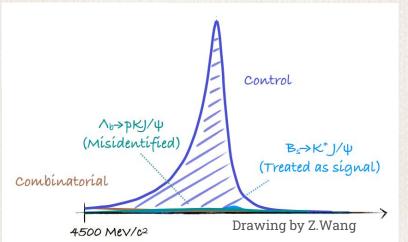
$$P'_{6} = \frac{S_{7}}{\sqrt{F_{L}(1 - F_{L})}},$$

$$P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_L(1-F_L)}},$$

$$P'_6 = \frac{S_7}{\sqrt{F_L(1-F_L)}},$$

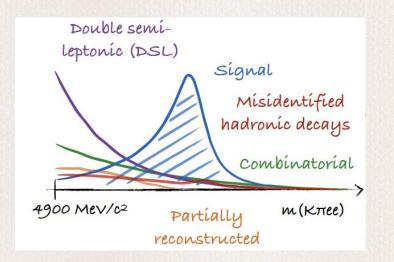

The buzz of b →sll and why it still matters

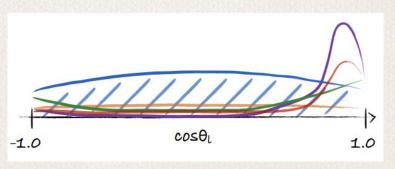

PIC24 2023 Oct 23 Athens


Alice Biolchini

NikThet

Test fit strategy


The buzz of b →sll and why it still matters

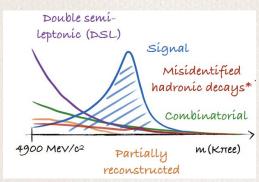

PIC24 2023 Oct 23 Athens

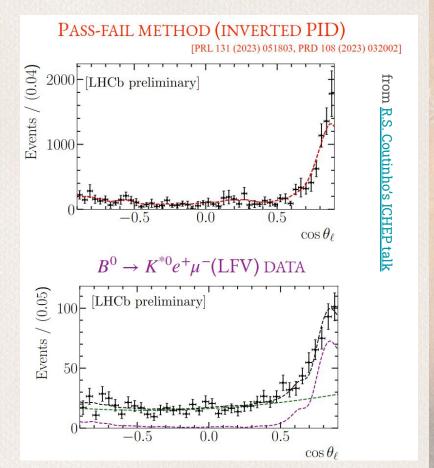
> Alice Biolchini

Rare mode components

- Combinatorial
- Partially reconstructed [e.g. $B^+ \to K_{1,2} (\to K\pi\pi)ee$]
- $Cos(\vartheta_1)$ peaking components:
 - a. Single and double **hadronic misidentified** decays (K, π identified as e)
 - b. **Double semileptonic** decays e.g. $B \rightarrow D^* (\rightarrow K\pi e \nu) e^+ \nu$

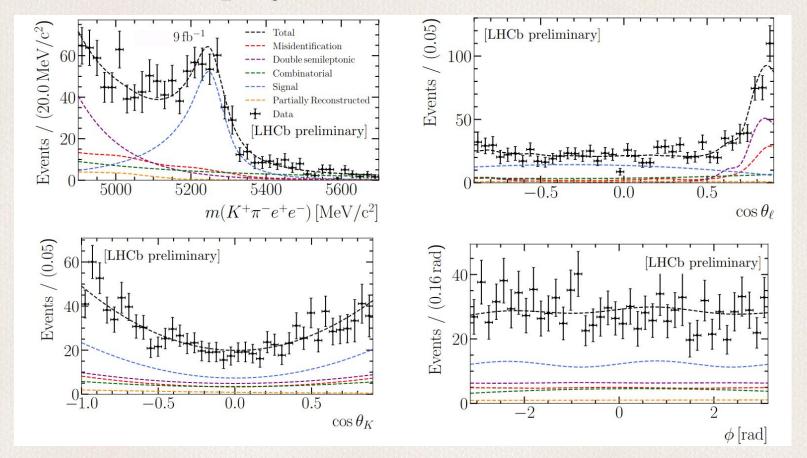
Drawings by Z.Wang


The buzz of b →sll and why it still matters


PIC24 2023 Oct 23 Athens

Rare mode components

- Paramount the control over backgrounds
 - mass & angular structure
- LFV Data
 - Combinatorial and DSL
- Data-driven estimation
 - Hadronic misidentified
- Monte Carlo simulation
 - Partially-Reconstructed



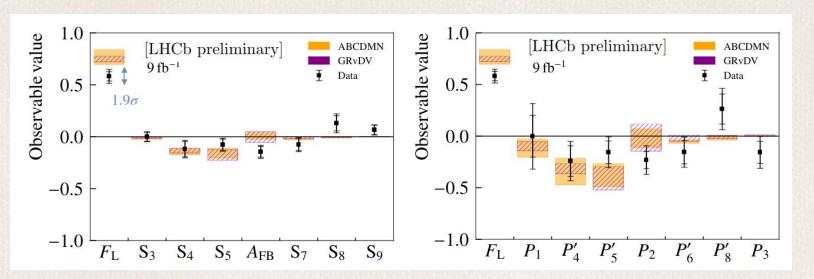
The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

> Alice Biolchini

Rare mode fit projections

The buzz of b →sll and why it still matters


PIC24 2023 Oct 23 Athens

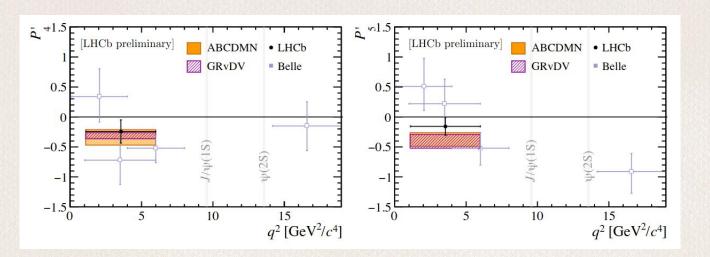
Alice Biolchini

Vikthef

Rare mode angular observables

[1.1-6] GeV^2/c^4 Tables in backup

Overall good agreement with SM predictions



The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

Rare mode angular observables

Comparison with Belle result

Agreement with Belle result and SM prediction

[Belle Collaboration, PRL 118 (2017) 111801]

GRvDV → [N. Gubernari, M. Reboud, D. Van Dyk, J. Virto, JHEP 09 (2022) 133]
ABCDMN → [M. Algueró, A. Biswas, B.Capdevila, S. Descotes-Genon, J. Matias, EPJC 83 (2023) 7, 648]

The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

Systematic uncertainties

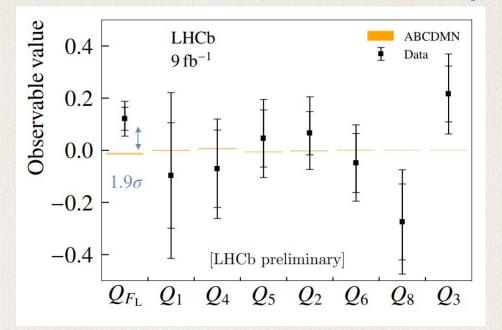
	F_L	S_3	S_4	S_5	A_{FB}	S_7	S_8	S_9	
DSL and comb.	0.687	0.372	0.297	0.321	0.449	0.177	0.668	0.294	
Part. reco.	0.091	0.039	0.039	0.049	0.051	0.021	0.034	0.037	
Had. misid.	0.376	0.254	0.107	0.178	0.155	0.336	0.129	0.141	
Effective acceptance	0.399	0.249	0.419	0.410	0.331	0.508	0.393	0.214	
Signal mass modelling	0.254	0.057	0.071	0.111	0.122	0.044	0.045	0.062	
Residual backgrounds	0.179	0.039	0.045	0.062	0.137	0.032	0.032	0.047	
S-wave component	0.351	0.050	0.129	0.084	0.105	0.159	0.008	0.103	
B^+ veto	0.499	0.133	0.152	0.179	0.242	0.159	0.154	0.117	
Fit bias	0.007	0.008	0.030	0.038	0.042	0.007	0.019	0.031	
Total*	1.118	0.540	0.570	0.601	0.665	0.676	0.804	0.430	

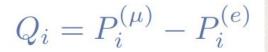
VALUES ARE GIVEN RELATIVE TO THE STATISTICAL UNCERTAINTIES

Major contributions:

- Double semi-leptonic and combinatorial parametrisation
- Acceptance

The buzz of b →sll and why it still matters

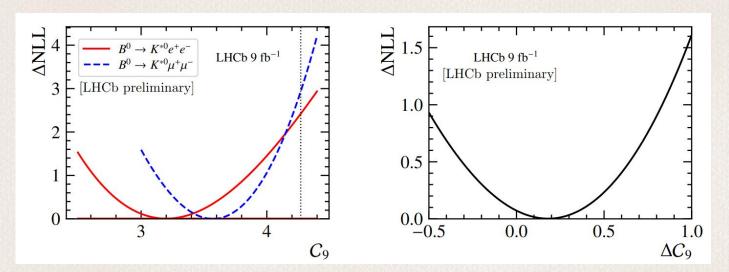

PIC24 2023 Oct 23 Athens



Qi angular observables

- LFU angular observables
- Results consistent with LFU conservation hypothesis

Tables in backup


The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

Alice Biolchini

Interpretation

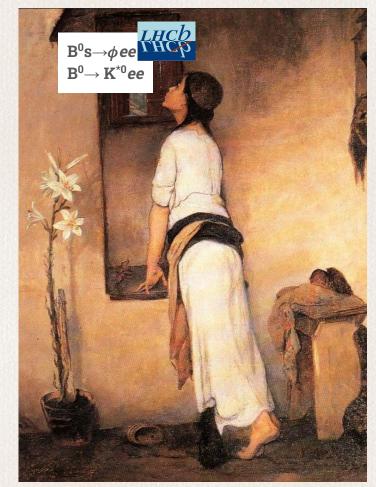
- WC global fit with all angular observables
- Likelihood scan varying Re(C9)

Similar shift between e and µ

 $\Delta C9 = C9^{(e)} - C9^{(\mu)}$ compatible with zero

- Form factors constrained from [JHEP 12 (2023) 153] and non-local QCD terms from [JHEP 02 (2021) 088, JHEP 09 (2022) 133]
- Local and non-local hadronic contributions shared for e and μ

The buzz of b →sll and why it still matters


PIC24 2023 Oct 23 Athens

Alice Biolchini

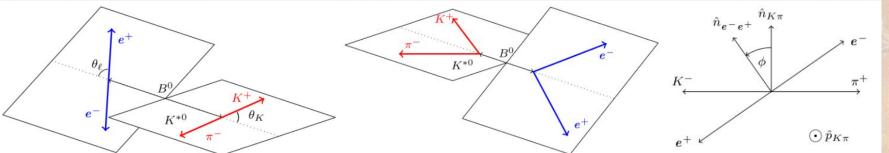
Summary and conclusions

- First angular analysis for electrons in the central q² region at hadronic machines
 - Sensitivity at same level at first P₅⁽¹⁾
 measurements with muons
- Results compatible with SM and LFU hypothesis

 [LHCB-PAPER-2024-022-001, Preliminary]
- Wilson Coefficients global fit highlights similar shift in $\Re(C9)$ as in the $B^0 \rightarrow K^{*0}\mu\mu$ decay
- This analysis paved the way for **new angular** analysis in the electron sector (e.g.)
 - $B^0s \rightarrow \phi ee$ under review
 - \circ B⁰ \rightarrow K^{*0}ee legacy -ongoing

Thanks for your attention. Any questions?

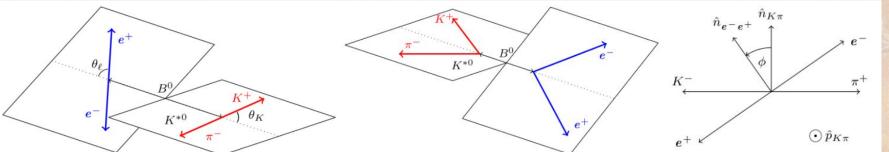
abiolchi@nikhef.nl


alice.biolchini@cern.ch

Backup slide: Decay angles

 $\theta_l \rightarrow \text{ between the direction of the } e^+ \text{and the direction opposite to that of the } B^0 \text{ in the rest frame of the dimuon system}$

 $\theta \kappa \rightarrow$ between the direction of the K⁺ and the direction of the B⁰ in the rest frame of the K^{*0} $\phi \rightarrow$ between the plane defined by the electrons pair and the plane defined by the kaon and pion in the B⁰ rest frame


The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

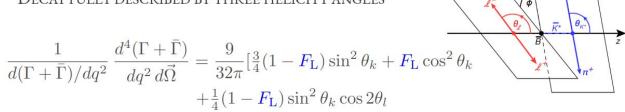
Backup slide: Decay angles

$$\begin{split} \cos \phi &= \left(\hat{p}_{e^{+}}^{(B^{0})} \times \hat{p}_{e^{-}}^{(B^{0})} \right) \cdot \left(\hat{p}_{K^{+}}^{(B^{0})} \times \hat{p}_{\pi^{-}}^{(B^{0})} \right), \\ \sin \phi &= \left[\left(\hat{p}_{e^{+}}^{(B^{0})} \times \hat{p}_{e^{-}}^{(B^{0})} \right) \times \left(\hat{p}_{K^{+}}^{(B^{0})} \times \hat{p}_{\pi^{-}}^{(B^{0})} \right) \right] \cdot \hat{p}_{K^{*0}}^{(B^{0})} \\ \cos \theta_{\ell} &= \left(\hat{p}_{e^{+}}^{(e^{+}e^{-})} \right) \cdot \left(\hat{p}_{e^{+}e^{-}}^{(B^{0})} \right) = \left(\hat{p}_{e^{+}}^{(e^{+}e^{-})} \right) \cdot \left(-\hat{p}_{B^{0}}^{(e^{+}e^{-})} \right) \\ \cos \theta_{K} &= \left(\hat{p}_{K^{+}}^{(K^{*0})} \right) \cdot \left(\hat{p}_{K^{*0}}^{(B^{0})} \right) = \left(\hat{p}_{K^{+}}^{(K^{*0})} \right) \cdot \left(-\hat{p}_{B^{0}}^{(K^{*0})} \right) \end{split}$$

$$\begin{split} \cos \phi &= \left(\hat{p}_{e^{-}}^{(\bar{B}^{0})} \times \hat{p}_{e^{+}}^{(\bar{B}^{0})} \right) \cdot \left(\hat{p}_{K^{-}}^{(\bar{B}^{0})} \times \hat{p}_{\pi^{+}}^{(\bar{B}^{0})} \right), \\ \sin \phi &= \left[\left(\hat{p}_{e^{-}}^{(\bar{B}^{0})} \times \hat{p}_{e^{+}}^{(\bar{B}^{0})} \right) \times \left(\hat{p}_{K^{-}}^{(\bar{B}^{0})} \times \hat{p}_{\pi^{+}}^{(\bar{B}^{0})} \right) \right] \cdot \hat{p}_{\bar{K}^{*0}}^{(\bar{B}^{0})} \\ \cos \theta_{\ell} &= \left(\hat{p}_{e^{-}}^{(e^{+}e^{-})} \right) \cdot \left(\hat{p}_{e^{+}e^{-}}^{(\bar{B}^{0})} \right) = \left(\hat{p}_{e^{-}}^{(e^{+}e^{-})} \right) \cdot \left(-\hat{p}_{\bar{B}^{0}}^{(e^{+}e^{-})} \right) \\ \cos \theta_{K} &= \left(\hat{p}_{K^{-}}^{(K^{*0})} \right) \cdot \left(\hat{p}_{K^{*0}}^{(\bar{B}^{0})} \right) = \left(\hat{p}_{K^{-}}^{(\bar{K}^{*0})} \right) \cdot \left(-\hat{p}_{\bar{B}^{0}}^{(\bar{K}^{*0})} \right) \end{split}$$

The buzz of b→sll and why it still matters

PIC24 2023 Oct 23 Athens


Alice Biolchini

from R.S. Coutinho's ICHEP talk

SE UNIVERSITY OF THE STATE OF T

The rare decay $B^0 \rightarrow K^{*0}[K^+\pi^-]e^+e^-$

DECAY FULLY DESCRIBED BY THREE HELICITY ANGLES

Fraction of longitudinal polarisation of the K*

 $+S_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_k \sin \theta_l \cos \phi$

 $-F_{\rm L}\cos^2\theta_k\cos2\theta_l + S_3\sin^2\theta_k\sin^2\theta_l\cos2\phi_l$

Forward-backward asymmetry of the di-lepton system

 $+\frac{4}{3}A_{\text{FB}}\sin^2\theta_k\cos\theta_l + S_7\sin2\theta_k\sin\theta_l\sin\phi$ $+S_8\sin2\theta_k\sin2\theta_l\sin\phi + S_9\sin^2\theta_k\sin^2\theta_l\sin2\phi]$

 F_L A_{FB} and S_i are combinations of K^{*0} spin amplitudes sensitive to $C_{7,9,10}^{()}$ and form factors

Perform ratios of observables (e.g. P_5) where form factors cancel at Leading order

$$P_5' = \frac{S_5}{\sqrt{F_{\rm L}(1 - F_{\rm L})}} \quad _{\rm [JHEP\,1204\,(2012)\,104]}$$

*S-WAVE CONTRIBUTION IS CONSIDERED IN THE SYSTEMATICS

LHCb THCb

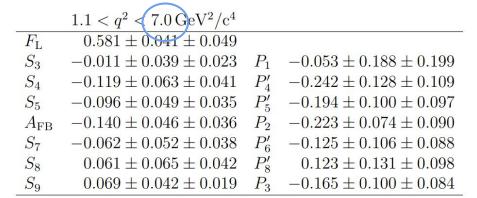
The buzz of b →sll and why it still matters

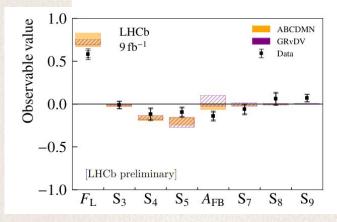
PIC24 2023 Oct 23 Athens

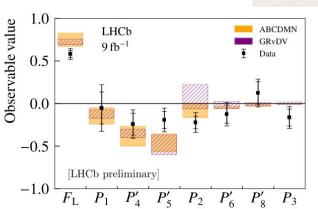
Alice Biolchini

Control Mode angular fit - $B^0 \rightarrow K^{*0}(J/\psi \rightarrow ee)$

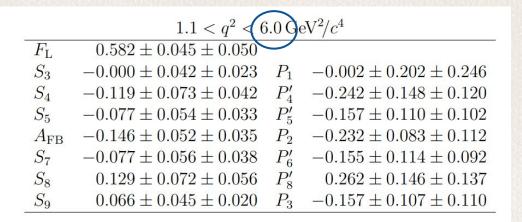
		Total		Differences
	Result	uncertainty	Differences	(σ)
F_L	0.5539 ± 0.0019	0.0049	0.0070	1.4
S_3	-0.0074 ± 0.0020	0.0026	0.0071	2.7
S_4	-0.2393 ± 0.0026	0.0049	-0.0096	-2.0
S_5	-0.0036 ± 0.0023	0.0029	0.0043	1.5
A_{FB}	0.0008 ± 0.0016	0.0029	-0.0003	-0.1
S_7	-0.0022 ± 0.0023	0.0029	0.0033	1.1
S_8	-0.0517 ± 0.0025	0.0032	-0.0027	-0.8
S_9	-0.0839 ± 0.0021	0.0032	-0.0013	-0.4
F_S	0.0690 ± 0.0040	0.0105	-0.0077	-0.7
S_{S_1}	-0.2150 ± 0.0040	0.0161	-0.0128	-0.8
S_{S_2}	$0.0278 \pm\ 0.0026$	0.0033	-0.0057	-1.7
S_{S_3}	$0.0014 \pm \ 0.0023$	0.0029	-0.0007	-0.2
S_{S_4}	-0.0012 ± 0.0024	0.0030	0.0012	0.4
S_{S_5}	-0.0619 ± 0.0027	0.0036	-0.0052	-1.5

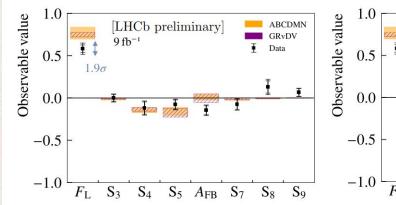


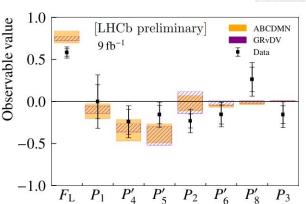

The buzz of b →sll and why it still matters


PIC24 2023 Oct 23 Athens

CP averaged angular observables




The buzz of b →sll and why it still matters


PIC24 2023 Oct 23 Athens

Alice Biolchini

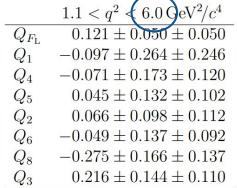
CP averaged angular observables

The buzz of b→sll and why it still matters

PIC24 2023 Oct 23 Athens

Alice Biolchini

LFU Observables


Observable value

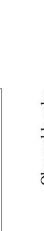
0.4

0.2

-0.2

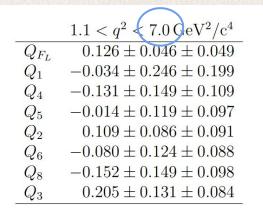
-0.4

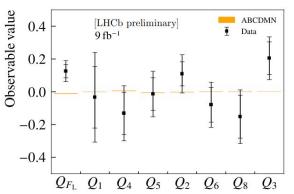
[LHCb preliminary]


 Q_4

 Q_5

 Q_2


 Q_6


 $9 \, \text{fb}^{-1}$

ABCDMN

Data

The buzz of b→sll and why it still matters

PIC24 2023 Oct 23 Athens

Alice Biolchini

from R.S.

The buzz of b →sll and why it still matters

 S_i Observables in the region between [1.1, 6.0] GeV

[STATISTICAL]

[SYSTEMATICS]

	F_L	S_3	S_4	S_5	A_{FB}	S_7	S_8	S_9		F_L	S_3	S_4	S_5	A_{FB}	S_7	S_8	S_9
F_L	1.00	0.01	-0.07	0.00	0.06	-0.01	-0.04	-0.06	F_L	1.000	0.008	-0.105	-0.151	-0.226	-0.015	0.014 -	-0.051
S_3		1.00	-0.07	-0.02	0.05	0.10	-0.08	-0.01	S_3		1.000	0.004	-0.055	0.002	0.007	0.015	0.014
S_4			1.00	-0.10	-0.10	-0.07	0.09	0.09	S_4			1.000	0.354	0.013	-0.038	0.001	0.006
S_5				1.00	-0.05	0.06	-0.04	-0.03	S_5				1.000	0.084	0.000	-0.033	0.007
A_{FB}					1.00	0.11	-0.07	-0.06	A_{FB}					1.000	-0.017	-0.006	0.014
S_7						1.00	-0.07	-0.14	S_7						1.000	0.089 -	-0.044
S_8							1.00	-0.01	S_8							1.000 -	-0.004
S_8 S_9								1.00	S_9								1.000

\$\displaystyle{\text{bservables}}\$ in the region between [1.1, 6.0] GeV

[STATISTICAL]

[SYSTEMATICS]

F_L	P_1	P_2	P_3	P_4'	P_5'	P_6'	P_8'		F_L	P_1	P_2	P_3	P_4'	P_5'	P_6'
1.00	0.02	-0.20	-0.08	-0.09	-0.02	-0.02	-0.01	F_L	1.00	-0.041	-0.142	0.023	-0.223	-0.326	-0.0
	1.00	0.04	0.01	-0.07	-0.02	0.10	-0.08	P_1		1.000	0.009	-0.012	0.001	-0.030	-0.0
		1.00	0.06	-0.07	-0.05	0.11	-0.06	P_2			1.000	0.017	0.067	0.127	0.0
			1.00	-0.08	0.03	0.14	0.02	P_3				1.000	-0.004	0.002	0.0
				1.00	-0.10	-0.07	0.09	P_4'					1.000	0.418	-0.0
					1.00	0.06	-0.03	$P_5^{'}$						1.000	0.0
						1.00	-0.07	P_6'							1.0
							1.00	$P_8^{'}$							

DSL and Combinatorial modelling

rhcb rhcb

Data-drive method:

- Possibility to examine full $\cos \theta_{\ell}$ distribution—exploting full statistic potential of the analysis.
- \circ LFV Data $K^{*0}e\mu$ which contains both combinatorial and DSL

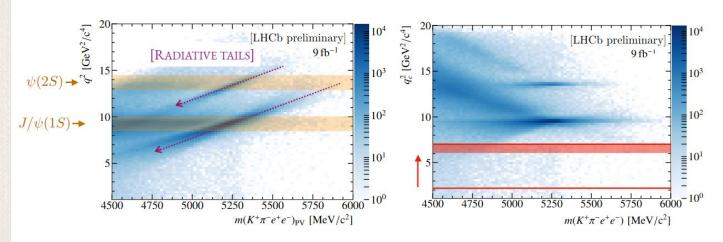
Strategy:

- a. *Isolate a sample enriched in DSL* with minimal combinatorial contamination
 - lower B invariant mass range of [4500, 5200] MeV/c2
 - tight cut to the combinatorial MVA output (MVA > 0.9985)
- b. **Fit to angular distributions alone** is performed to obtain the lineshapes of the contribution
- c. Select independent LFV sub sample <u>not</u> DSL enriched (containing contributions from both combinatorial and DSL)
- d. Invariant mass and angular fit to obtain the *slope of the DSL*, and the *angular shape and slope of the combinatorial background*

The buzz of b→sll and why it still matters

PIC24 2023 Oct 23 Athens

Alice Biolchini


The buzz of b →sll and why it still matters

Niklhef

DATA SELECTION

IMPROVED STRATEGY TO CONTROL SIGNAL RESOLUTION IN ELECTRONS:

 q^2 defined with B^0 primary vertex and B^0 mass constraint, allowing for the extension of the analysis range up to 7.0 GeV²/c⁴ and reduced bin migration

Analysis performed in two q^2 regimes: [1.1, 6.0] and [1.1, 7.0] GeV²/C⁴

Coutinho's

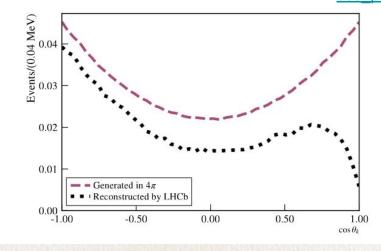
q² selection

Constrained q2:

- Variable computed by constraining the signal candidates to originate from the primary vertex and to have an invariant mass corresponding to the nominal mass of the B0 meson.
- The lower bound in the central q2 bin, which is set to 1.1 GeV2/c4 motivated to make the contribution from the background $\phi \rightarrow$ e+e-negligible

The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens


Acceptance parametrisation

Plot from

https://www.nikhef.nl/pub/services/biblio/the

The buzz of b →sll and why it still matters

PIC24 2023 Oct 23 Athens

> Alice Biolchini

Distortion of angular distributions from:

- selection and reconstructions
- Resolution effects

Effective approach that parametrise all these effects together