Resolving the DAMA/LIBRA Anomaly with the Full COSINE-100 Dataset

1b CENTER FOR _____ UNDERGROUND PHYSICS

Center for Underground Physics, Institute for Basic Science On behalf of the COSINE-100 Collaboration

DAMA signal can be...

Annual Modulation by DAMA

 ✓ <u>Dark matter</u> signal rate is expected to show the <u>annual</u> <u>modulation</u>.

Compatible Calibration

Nuclear Recoil keV_{nr}

✓ Correct using each quenching

No Modulation Detected

When the phase is fixed at June 2nd...

Electron Recoil Test

- ✓ <u>DAMA</u> has reported detecting for 27 yrs! the oscillation using <u>NaI(TI)</u> <u>detectors</u>.
- No other experiments have reproduced the signal, but with other materials and analysis methods.

COSINE-100 Tests DAMA

- ✓ 106 kg of NaI(TI) crystals was installed at Y2L.
 Yangyang Underground Laboratory
- Surrounded by the active and passive veto systems.
- ✓ 6.4 years operation (Oct 2016 ~ Mar 2023)
- Detector is upgraded for COSINE-100U at Yemilab

✓ Applied linear calibration passing through 59.5 keV.
✓ Same method as DAMA.
✓ 1-3 keV_{ee}, 1-6 keV_{ee} and 2-6 keV_{ee} were studied.

factor.
✓ Search in the NR energy.
✓ 6.7-20 keV_{nr} was studied which is 2-6 keV in DAMA.

Unbiased Statistical Model

 COSINE-100 is the only Nal experiment understanding the radioactive isotope contamination in detail.
arXiv:2408.0980(EPIC 81, 837 (202)

Even with an arbitrary phase...

Model-dependent test for DAMA/LIBRA

Model-independent test for DAMA/LIBRA

6.4 years full dataset for model-independent test

Low energy threshold with a high efficiency. arXiv:2408.14688 ~50% at 1keV
Crystal responses to photon and neutron were measured.
Improved detector PRC 110, 014614 (2024) understanding

7 5 10 15 Energy [keV]

Every radioactive isotope was considered to avoid any statistical bias.

 Posterior distribution of the modulation amplitude A was extracted using the Markov chain Monte Carlo method.

 $\widehat{E}_{ik} = R_i(t_k) \Delta t m_i \Delta E \varepsilon_{ik}^{(\text{livetime})} \varepsilon_i^{(\text{selection})},$ $n_{ik} \stackrel{\text{iid}}{\sim} \operatorname{Pois}(\widehat{E}_{ik})$ ✓ Radioactive terms were constrained assumption 6.7 – 20 keV_{nr} 2XDAMA by the background model. No signal Pseudo-experiments show no bias. -2XDAMA total 17,000 simulations 0 2 -2 -4 \checkmark Blind analysis was performed. Pull Factor

No periodic behavior in the residual event rate!

The DAMA signal was <u>not reproduced</u> in the COSINE-100 full dataset, showing a >3 sigma <u>discrepancy</u> (same target and same analysis)

E (keV _{ee})	A (counts/day/kg/keV _{ee})	
	COSINE-100	DAMA/LIBRA
1-3	0.0004±0.0050	0.0191 ± 0.0020
1-6	0.0017±0.0029	0.01048±0.00090
2-6	0.0053±0.0031	0.00996 ± 0.00074

E (keV _{nr})	A (counts/day/kg/3.3 keV _{nr})	
	COSINE-100	DAMA/LIBRA
6.7-20	0.0013±0.0027	0.00996±0.00074

NCSR Demokritos, Athens, Greece

43rd International Symposium on Physics in Collision (PIC2024)

